年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2023年中考人教版数学一轮复习 第2章 方程(组)与不等式(组) 试卷

    立即下载
    加入资料篮
    2023年中考人教版数学一轮复习  第2章 方程(组)与不等式(组)第1页
    2023年中考人教版数学一轮复习  第2章 方程(组)与不等式(组)第2页
    2023年中考人教版数学一轮复习  第2章 方程(组)与不等式(组)第3页
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年中考人教版数学一轮复习 第2章 方程(组)与不等式(组)

    展开

    这是一份2023年中考人教版数学一轮复习 第2章 方程(组)与不等式(组),共14页。
    第二章 方程()与不等式()    第一节 一次方程()及其应用考 点  易错自纠易错点1 移项时忘记变号1.解方程5x-3=2x+2,移项正确的是 ( A )                  A.5x-2x=3+2    B.5x+2x=3+2C.5x-2x=2-3   D.5x+2x=2-3易错点2 去分母时漏乘常数项2.[2020重庆A]解一元一次方程(x+1)=1-x,去分母后正确的是 ( D )A.3(x+1)=1-2x B.2(x+1)=1-3xC.2(x+1)=6-3x D.3(x+1)=6-2x方 法  命题角度1 一次方程()的解法提分特训1.[2020天津]方程组的解是 ( A )A. B. C. D.2.[2020江苏连云港]解方程组:代入,2(1-y)+4y=5,解得y=.y=代入,x=-,所以原方程组的解为命题角度2 一次方程()的实际应用提分特训3.[2020石家庄一模]现有两种礼包,甲种礼包里面含有4个毛绒玩具和1套文具,乙种礼包里面含有3个毛绒玩具和2套文具.某商店采购了若干件礼包,这些礼包正好含有37个毛绒玩具和18套文具,则采购甲种礼包的数量为              ( C )A.2 B.3 C.4 D.54.[2020山东临沂]《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前.其中一道题,原文是:今三人共车,两车空;二人共车,九人步.问人与车各几何.”意思是:现有若干人和车,若每辆车乘坐3,则空余2辆车;若每辆车乘坐2,则有9人步行.问人与车各多少.设有x,y辆车,可列方程组为              ( B )A. B.C. D.5.[广西百色]一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米.:(1)设该轮船在静水中的速度是x千米/,水流速度是y千米/,依题意,解得:该轮船在静水中的速度是12千米/,水流速度是3千米/.(2)设甲、丙两地相距a千米,则乙、丙两地相距(90-a)千米,依题意,=,解得a=.:甲、丙两地相距千米.真 题  考法速览考法1 等式的性质(101)考法2 解一次方程()(103)考法3 一次方程()的实际应用(101)考法1等式的性质                  1.[河北,7]有三种不同质量的物体”“”“,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量相等,则该组是              ( A )        考法2解一次方程()2.[河北,11]利用加减消元法解方程组下列做法正确的是 ( D )A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×23.[河北,18]如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.     示例:4+3=7.(1)用含x的式子表示m,m= 3x ; (2)y=-2,n的值为 1 . 4.[河北,19]已知 是关于x,y的二元一次方程x=y+a的解.(a+1)(a-1)+7的值.:x=2,y=代入x=y+a,a=.(a+1)(a-1)+7=a2-1+7=a2+6=()2+6=9.考法3一次方程()的实际应用5.[河北,20]如图,某市A,B两地之间有两条公路,一条是市区公路AB,另一条是外环公路AD—DC—CB.这两条公路围成等腰梯形ABCD,其中DCAB,AB∶AD∶DC=10∶5∶2.(1)求外环公路总长和市区公路长的比.(2)某人驾车从A地出发,沿市区公路去B,平均速度是40 km/h.返回时沿外环公路行驶,平均速度是80 km/h,结果比去时少用了 h,求市区公路的长.:(1)AB=10x km,AD=5x km,CD=2x km.四边形ABCD是等腰梯形,DCAB,∴BC=AD=5x km,∴AD+DC+CB=12x km,故外环公路总长和市区公路长的比为12x∶10x=6∶5.(2)(1)可知,市区公路的长为10x km,外环公路的总长为12x km.由题意,=+,解这个方程,x=1,∴10x=10.故市区公路的长为10 km.     第二节 分式方程及其应用考 点  易错自纠易错点1 解分式方程去分母时漏乘不含分母的项1.分式方程 +=1的解是 ( A )                  A.x=1    B.x=-1  C.x=3   D.x=-3易错点2 解分式方程时忽略分母不为0的条件2.分式方程 =0的解是 ( B )A.x=-1    B.x=1     C.x=±1     D.无解3.已知关于x的分式方程 =1的解是负数,m的取值范围是 ( D )A.m3  B.m3m2C.m<3  D.m<3m2方 法  命题角度1 解分式方程提分特训1.[2020黑龙江哈尔滨]方程=的解为 ( D )                 A.x=-1  B.x=5  C.x=7  D.x=92.[2020石家庄新华区一模]若关于x的方程 +=2的解为正数,m的取值范围是 ( D )A.m<6 B.m>6C.m>6m8 D.m<6m03.[2020陕西]解分式方程:-=1.:由原方程,(x-2)2-3x=x(x-2).x2-4x+4-3x=x2-2x.-5x=-4.x=.经检验,x=是原方程的根.   命题角度2 分式方程的实际应用提分特训4.[2020湖南长沙]随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得              ( B )                  A.= B.=C.= D.=5.[2020唐山路北区一模]某工程队承接了60万平方米的绿化工程,由于情况有变……设原计划每天绿化的面积为x万平方米,列方程为-=30,根据方程可知省略的部分是              ( C )A.实际每天的工作效率比原计划提高了20%,结果提前30天完成了这一任务B.实际每天的工作效率比原计划提高了20%,结果延误30天完成了这一任务C.实际每天的工作效率比原计划降低了20%,结果延误30天完成了这一任务D.实际每天的工作效率比原计划降低了20%,结果提前30天完成了这一任务真 题  考法  分式方程的实际应用(103)                  1.[河北,12]在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是              ( B )A.=-5 B.=+5C.=8x-5 D.=8x+52.[河北,7]甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路x m.依题意,下面所列方程正确的是              ( A )A.= B.=C.= D.=   第三节 一元二次方程及其应用考 点  易错自纠易错点1 忽略一元二次方程的二次项系数不为0的条件 1.若关于x的一元二次方程(a-3)x2+x+a2-9=0的一个根是0,a的值是 ( C )                 A.0   B.3    C.-3   D.±32.若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,k的取值范围是 ( C )A.k<5      B.k<5k1C.k5k1     D.k>5易错点2 解一元二次方程时错误约分 3.解方程:2x(2x-3)=5(2x-3).:2x(2x-3)-5(2x-3)=0,(2x-3)(2x-5)=0,2x-3=02x-5=0,∴x1=,x2=.易错点3 方程ax2+bx+c=0有实数根时,未对a的值进行分类讨论 4.已知关于x的方程ax2+2x-3=0有实数根,a的取值范围是 a>- . 方 法   命题角度1 解一元二次方程提分特训1.[2020石家庄新华区一模]将一元二次方程x2-6x+5=0配方后,原方程变形为( B )                  A.(x-6)2=5 B.(x-3)2=4C.(x-6)2=4 D.(x-3)2=52.[江苏扬州]一元二次方程x(x-2)=x-2的根是 x1=1,x2=2 . 3.[湖北十堰]对于实数a,b,定义运算如下:ab=(a+b)2-(a-b)2.(m+2)(m-3)=24,m= -34 . 4.[2020甘肃陇南中考改编]已知x=1是一元二次方程(m-2)x2+4x-m2=0的一个根,m的值为 -1 .  命题角度2 一元二次方程的判别式提分特训5.[2020安徽]下列方程中,有两个相等实数根的是 ( A )A.x2+1=2x B.x2+1=0C.x2-2x=3 D.x2-2x=06.[2020辽宁抚顺]若关于x的一元二次方程x2+2x-k=0无实数根,k的取值范围是 k<-1 . 7.[北京]关于x的方程x2-2x+2m-1=0有实数根,m为正整数,m的值及此时方程的根.:关于x的方程x2-2x+2m-1=0有实数根,∴Δ=(-2)2-4(2m-1)0,解得m1.∵m为正整数,∴m=1,则原方程为x2-2x+1=0,解得x1=x2=1.命题角度3 一元二次方程的实际应用 提分特训8.[2020广西河池]某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36,则参加此次比赛的球队数是              ( D )                  A.6   B.7   C.8   D.99.[2020上海]某商店去年十一黄金周进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年十一黄金周这七天的总营业额;(2)去年,该商店7月份的营业额为350万元, 8,9月份营业额的月增长率相同,十一黄金周这七天的总营业额与9月份的营业额相等,求该商店去年8,9月份营业额的月增长率.:(1)450+450×12%=504(万元).:该商店去年十一黄金周这七天的总营业额为504万元.(2)设该商店去年8,9月份营业额的月增长率为x,根据题意,350(1+x)2=504,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).:该商店去年8,9月份营业额的月增长率为20%.真 题  考法速览考法1 解一元二次方程(103)考法2 一元二次方程根的判别式(103)考法1解一元二次方程                   1.[河北,8]用配方法解方程x2+4x+1=0,配方后的方程是 ( A )A.(x+2)2=3 B.(x-2)2=3C.(x-2)2=5 D.(x+2)2=52.[河北,21]嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a0)的求根公式时,对于b2-4ac>0的情况,她是这样做的:由于a0,方程ax2+bx+c=0变形为:  x2+x=-,………………………………第一步 x2+x+()2=-+()2, …………………第二步 (x+)2=,…………………………第三步 x+=(b2-4ac>0),………………第四步 x=.…………………………第五步(1)嘉淇的解法从第 四 步开始出现错误;事实上,b2-4ac>0,方程ax2+bx+c=0(a0)的求根公式是 x= . (2)用配方法解方程:x2-2x-24=0.:(1)四 x=(2)x2-2x=24,x2-2x+1=24+1,(x-1)2=25,x-1=±5,∴x1=6,x2=-4.考法2一元二次方程根的判别式3.[河北,12]若关于x的方程x2+2x+a=0不存在实数根,a的取值范围是 ( B )A.a<1 B.a>1 C.a1 D.a14.[河北,14]a,b,c为常数,(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0的根的情况是 ( B )A.有两个相等的实数根 B.有两个不相等的实数根C.无实数根 D.有一根为05.[河北,15]小刚在解关于x的方程ax2+bx+c=0(a0),只抄对了a=1,b=4,解出其中一个根是x=-1.他核对时发现所抄的c比原方程的c值小2,则原方程的根的情况是              ( A )A.不存在实数根 B.有两个不相等的实数根C.有一个根是x=-1 D.有两个相等的实数根     第四节 一元一次不等式()及其应用考 点  易错自纠易错点1 对不等式的基本性质掌握不牢1.m>n,则下列不等式不正确的是 ( D )                 A.m-2>n-2 B.>C.6m>6n   D.-8m>-8n2.a<b,则下列结论不一定成立的是 ( D )A.a-1<b-1   B.2a<2bC.->-        D.a2<b2易错点2 对不等式组无解理解错误3.若关于x的不等式组无解,a的取值范围是 ( A )A.a-3  B.a<-3  C.a>3     D.a3易错点3 列不等式解决实际问题时,未正确理解至少”“最多”“不超过4.某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5,800元单独购买甲图书比用800元单独购买乙图书要少24.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的数量比购买甲图书数量的2倍多8,且用于购买甲、乙两种图书的总经费不超过1 060,那么该图书馆最多可以购买多少本乙图书?:(1)设乙图书每本价格为x,则甲图书每本价格是2.5x,根据题意可得-=24,解得x=20,经检验,x=20是原方程的根,2.5x=50,:乙图书每本价格为20,甲图书每本价格为50.(2)设购买甲图书y,则购买乙图书(2y+8),50y+20(2y+8)1 060,解得y10,2y+828.:该图书馆最多可以购买28本乙图书.方 法  命题角度1 解一元一次不等式组提分特训1.[2020广东]不等式组的解集为 ( D )                  A.无解        B.x1C.x-1 D.-1x12.[2020湖北襄阳]不等式组中两个不等式的解集在数轴上表示正确的是 ( A )   命题角度2 一元一次不等式的实际应用提分特训3.小明用100元钱去购买笔记本和钢笔共30,已知每本笔记本3,每支钢笔5,求小明最多能买几支钢笔.设小明买了x支钢笔,依题意可列不等式为              ( D )                 A.3x+5(30-x)100 B.3(30-x)+5100C.5(30-x)100+3x D.5x100-3(30-x)4.[2020辽宁朝阳]某品牌衬衫进价为120/,标价为240/,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?              ( B )A.8    B.6   C.7   D.95.[2020四川宜宾]某单位为响应政府号召,需要购买分类垃圾桶6,市场上有A型和B型两种分类垃圾桶,A型分类垃圾桶500/,B型分类垃圾桶550/,总费用不超过3 100,则不同的购买方式有              ( B )A.2 B.3 C.4 D.56.[内蒙古赤峰]某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10,请认真阅读结账时老板与小明的对话:(1)结合两人的对话内容,求小明原计划购买文具袋多少个.(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400.其中钢笔标价每支8,签字笔标价每支6,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?:(1)设小明原计划购买文具袋x,则实际购买了(x+1),依题意得,10(x+1)×0.85=10x-17.解得x=17.:小明原计划购买文具袋17.(2)设小明购买钢笔y,则购买签字笔(50-y),依题意得[8y+6(50-y)]×80%400-10×17+17,解得y4.375,y最大值=4.:小明最多可购买钢笔4.真 题  考法速览考法1 解一元一次不等式()及其解集的表示(105)考法2 一元一次不等式的应用(105)考法1解一元一次不等式()及其解集的表示                 1.[河北,4]下列各数中,为不等式组的解的是 ( C )A.-1 B.0 C.2 D.42.[河北,21]定义新运算:对于任意实数a,b,都有ab=a(a-b)+1,等式右边是通常的加法、减法及乘法运算.比如: 25=2×(2-5)+1=2×(-3)+1=-6+1=-5.(1)(-2)3的值;(2)3x的值小于13,x的取值范围,并在如图所示的数轴上表示出来.:(1)(-2)?3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)∵3?x<13,∴3(3-x)+1<13,9-3x+1<13,-3x<3,x>-1.在数轴上表示如图所示.考法2一元一次不等式的应用3.[河北,4]语句“xx的和不超过5”可以表示为 ( A )A.+x5 B.+x5C.5 D.+x=54.[河北,22]甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟;若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)若乙单独整理需要多少分钟?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少需整理多少分钟才能完工?:(1)设乙单独整理需要x分钟,根据题意,+=1.解得x=80.经检验,x=80是原分式方程的解.:乙单独整理需要80分钟.(2)设甲需整理y分钟才能完工.根据题意,+1.解得y25.:甲至少需整理25分钟才能完工.参考答案第一节 一次方程()及其应用考点【易错自纠】1.A2.D 等式两边同时乘6,3(x+1)=6-2x.故选D.方法1 1 方法一:①×2-②,5y=-5,解得y=-1.y=-1代入,x+3×(-1)=-1,解得x=2,∴x+y=2-1=1.方法二:②×2+①,5x+5y=5,∴x+y=1.2 略提分特训1.A ①+②,3x=3,解得x=1.x=1代入,2×1+y=4,解得y=2,所以方程组的解为2.3.C 设采购甲种礼包x,乙种礼包y,根据题意, 解得 故采购甲种礼包的数量为4.4.B 由每辆车乘坐3,则空余2辆车列方程为=y-2;每辆车乘坐2,则有9人步行列方程为x-2y=9,=y.故选B.5.真题1.A 设”“”“的质量分别为x,y,z.假设选项A中两盘物体的质量相等,2x=3y,∴x=y;假设选项B中两盘物体的质量相等,x+2z=2y+2z,∴x=2y;假设选项C中两盘物体的质量相等,x+z=2y+z,∴x=2y;假设选项D中两盘物体的质量相等,2x=4y,∴x=2y.综上可知,只有选项A中的情况与其他不同,故选A.2.D ①×(-5),-10x-25y=50,②×2,10x-6y=12,将所得两个方程相加,-31y=62,从而消去x,D正确.3.3x 1 (1)由题意,x+2x=m,∴m=3x.(2)由题意,n=2x+3,m+n=y,∴3x+(2x+3)=y.y=-2,3x+(2x+3)=-2,解得x=-1,∴n=2x+3=2×(-1)+3=1.4.略 5.第二节 分式方程及其应用考点【易错自纠】1.A 方程两边同时乘x(x-2),(x+1)(x-2)+x=x(x-2),整理得x2-x-2+x=x2-2x,解得x=1,经检验,x=1是原分式方程的解,故选A.2.B 两边都乘x+1,x2-1=0,解得x=1x=-1,检验:x=1,x+10,x=1是原分式方程的解;x=-1,x+1=0,x=-1不是原分式方程的解.故原分式方程的解为x=1.3.D 解方程 =1,x=m-3.∵关于x的分式方程=1的解是负数,解得m<3m2,故选D.方法1 x= 去分母,x(x+2)=(x-1)2;去括号,x2+2x=x2-2x+1;移项、合并同类项,4x=1;系数化为1,x=.检验:x=,(x-1)(x+2)0,x=是原分式方程的解.2 略提分特训1.D 方程两边同时乘(x+5)(x-2),2(x-2)=x+5,解得x=9,经检验,x=9是原分式方程的解,故选D.2.D 去分母,2-(x+m)=2(x-2),去括号,2-x-m=2x-4,移项、合并同类项,-3x=m-6,系数化为1,x=.∵该方程的解为正数,>0,-20,∴m<6m0.3.4.B 由于更新技术前每天生产x万件产品,所以更新技术后每天生产(x+30)万件产品.因为更新技术后生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同,所以可列方程为=,故选B.5.C 由(1-20%)x可知实际工作时每天的工作效率比原计划下降了20%,所以工程延误.真题1.B 3x8x的倒数分别为,,由题意知,5,据此可列出分式方程=+5.2.A 由甲队每天修路x m,知乙队每天修路(x-10)m,甲队修路120 m所用的天数为,乙队修路100 m所用的天数为,根据甲队修路120 m与乙队修路100 m所用天数相同列方程为=.第三节 一元二次方程及其应用考点【易错自纠】1.C 将x=0代入(a-3)x2+x+a2-9=0,a2-9=0,解得a=±3.∵a-30,∴a3,∴a=-3,故选C.2.C Δ=42-4(k-1)=-4k+20,由题意得-4k+200,解得k5.k-10,所以k1,因此k的取值范围是k5k1 ,故选C.3.4.a>- 当a=0,原方程为2x-3=0,该方程的根为x=.a0,Δ=b2-4ac=4+4×3a0,解得a>-.综上所述,a>-.方法1 略2 A 将原方程化成一般式为x2+(k-3)x+1-k=0,由题可知Δ=(k-3)2-4(1-k)=k2-6k+9-4+4k=k2-2k+5=(k-1)2+4>0,原方程有两个不相等的实数根.故选A.3 (12-x)(8-x)=77x2-20x+19=0 分别将两条道路平移到如图所示的位置,因为道路的宽为x m,所以剩余部分的长为(12-x)m,宽为(8-x)m,面积为(12-x)(8-x)m2,根据题意可列方程(12-x)(8-x)=77,整理得x2-20x+19=0.提分特训1.B 移项,x2-6x=-5,配方,x2-6x+9=-5+9,(x-3)2=4.2.x1=1,x2=2 x(x-2)=x-2,(x-1)(x-2)=0,x1=1,x2=2.3.-34 ∵ab=(a+b)2-(a-b)2=4ab,(m+2)(m-3)=4(m+2)(m-3)=24,整理得m2-m-12=0,解得m1=-3,m2=4.4.-1 把x=1代入(m-2)x2+4x-m2=0m-2+4-m2=0,解得m1=2,m2=-1.∵(m-2)x2+4x-m2=0是一元二次方程,∴m-20,∴m2,∴m=-1.5.A 逐项分析如下:选项分析根的情况A方程可转化为(x-1)2=0,x1=x2=1.有两个相等的实数根.B方程可转化为x2=-1,-1<0.无实数根.C方程可转化为x2-2x-3=0,Δ=(-2)2-4×1×(-3)=16>0.有两个不相等的实数根.D方程可转化为x(x-2)=0,x1=0,x2=2.有两个不相等的实数根. 故选A.6.k<-1 根据题意可知,Δ=b2-4ac=22-4×(-k)<0,解得k<-1.7.8.D 设参加此次比赛的球队数为x,根据题意得x(x-1)=36,化简,x2-x-72=0,解得x1=9,x2=-8(舍去),参加此次比赛的球队数是9.故选D.9.真题1.A x2+4x+1=0,移项,x2+4x=-1,方程两边都加上4,x2+4x+4=3,(x+2)2=3.2.3.B 关于x的方程不存在实数根,∴Δ<0,22-4×1×a<0,解得a>1.4.B (a-c)2>a2+c2,∴a2-2ac+c2>a2+c2,∴-ac>0.由根的判别式,Δ=b2-4ac>0,则该一元二次方程有两个不相等的实数根.5.A 一元二次方程为x2+4x+c=0,抄错c,解出其中一个根为x=-1,x=-1代入x2+4x+c=0,(-1)2+4×(-1)+c=0,解得c=3.由于所抄的c比原方程的c值小2”,故原方程的c5,即原方程为x2+4x+5=0.∵Δ=42-4×1×5=-4<0,原方程不存在实数根.第四节 一元一次不等式()及其应用考点【易错自纠】1.D 根据不等式的基本性质1,选项A中的不等式正确,根据不等式的基本性质2,选项B,C中的不等式正确,根据不等式的基本性质3,选项D中的不等式不正确.故选D.2.D 由不等式的基本性质可知选项A,B,C中的结论均正确.对于选项D,a=1,b=2,a<b,a2<b2;a=-5,b=1,a<b,a2>b2.故选D.3.A 不等式组无解,∴a-43a+2,解得a-3,故选A.4.方法1 略 2 略提分特训1.D 解不等式2-3x-1,x1;解不等式x-1-2(x+2),x-1.故不等式组的解集为-1x1.2.A 对于不等式组解不等式,x-2;解不等式,x<1.故不等式组的解集为-2x<1,根据解集在数轴上的表示方法可知选A.3.D 小明买了x支钢笔,则买了(30-x)本笔记本,根据题意,5x+3(30-x)1005x100-3(30-x).故选D.4.B 设可以打x折出售此商品,由题意得240×-120120×20%,解得x6,故选B.5.B 设购买A型分类垃圾桶x,则购买B型分类垃圾桶(6-x),依题意,500x+550(6-x)3 100,解得x4.x为整数且x6,所以x可取4,5,6,即有3种不同的购买方式.故选B.6.真题1.C 解不等式2x-3>0,x>,解不等式x-4<0,x<4,所以不等式组的解集为<x<4,所给的数中只有2在这个取值范围内.故选C.2.3.A xx的和为+x,不超过表示,+x5.4.              

    相关试卷

    初中数学中考一轮复习第2章方程(组)与不等式(组)第7课时分式方程中考演练(含答案):

    这是一份初中数学中考一轮复习第2章方程(组)与不等式(组)第7课时分式方程中考演练(含答案),共2页。试卷主要包含了分式方程3x-2=1的解是,解方程,解分式方程等内容,欢迎下载使用。

    初中数学中考一轮复习第2章方程(组)与不等式(组)第5课时一次方程(组)中考演练(含答案):

    这是一份初中数学中考一轮复习第2章方程(组)与不等式(组)第5课时一次方程(组)中考演练(含答案),共3页。

    初中数学中考一轮复习第2章 方程(组)与不等式(组)单元检测(含答案):

    这是一份初中数学中考一轮复习第2章 方程(组)与不等式(组)单元检测(含答案),共8页。试卷主要包含了填空题,羊二,直金十两.牛二,选择题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map