|学案下载
搜索
    上传资料 赚现金
    高考数学一轮复习第9章第2节用样本估计总体学案
    立即下载
    加入资料篮
    高考数学一轮复习第9章第2节用样本估计总体学案01
    高考数学一轮复习第9章第2节用样本估计总体学案02
    高考数学一轮复习第9章第2节用样本估计总体学案03
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学一轮复习第9章第2节用样本估计总体学案

    展开
    这是一份高考数学一轮复习第9章第2节用样本估计总体学案,共16页。学案主要包含了教材概念·结论·性质重现,基本技能·思想·活动经验等内容,欢迎下载使用。

    第二节 用样本估计总体
    考试要求:结合实例,能够利用样本估计总体的集中趋势以及离散程度,掌握分层随机抽样的样本均值和样本方差.

    一、教材概念·结论·性质重现
    1.频率分布直方图
    (1)频率分布表的画法.
    第一步:求极差,极差=最大值-最小值;
    第二步:决定组数和组距,组距=;
    第三步:将数据分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;
    第四步:登记频数,计算频率,列出频率分布表.
    (2)频率分布直方图:反映样本频率分布的直方图(如图).

    横轴表示样本数据,纵轴表示,每个小长方形的面积表示样本落在该组内的频率.

    1.频率分布直方图

    可以利用频率分布直方图估计总体的取值规律.
    2.频率分布直方图中的常见结论
    (1)众数的估计值为最高的小长方形的中点对应的横坐标.
    (2)平均数的估计值等于频率分布直方图中每个小长方形的面积乘小长方形底边中点的横坐标之和.
    (3)中位数的估计值的左边和右边的小长方形的面积和是相等的.
    2.中位数、众数、平均数
    (1)中位数:将一组数据按大小依次排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.
    (2)众数:一组数据中出现次数最多的数据称为这组数据的众数.
    (3)平均数:一组数据的算术平均数即为这组数据的平均数,n个数据x1,x2,…,xn的平均数=(x1+x2+…+xn).
    3.百分位数
    (1)第p百分位数的定义:
    一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.
    (2)计算一组n个数据的第p百分位数的步骤:
    第1步,按从小到大排列原始数据.
    第2步,计算i=np%.
    第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.
    4.样本的数字特征
    如果有n个数据x1,x2,…,xn,那么平均数为=(x1+x2+…+xn),
    标准差为s=,
    方差为s2=[(x1-)2+(x2-)2+…+(xn-)2].

    (1)若数据x1,x2,…,xn的平均数为,则mx1+a,mx2+a,mx3+a,…,mxn+a的平均数是m+a.
    (2)若数据x1,x2,…,xn的方差为s2,则数据ax1+b,ax2+b,…,axn+b的方差为a2s2.
    二、基本技能·思想·活动经验
    1.判断下列说法的正误,对的打“√”,错的打“×”.
    (1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势. ( √ )
    (2)一组数据的方差越大,说明这组数据越集中. ( × )
    (3)在频率分布直方图中,小长方形的面积越大,表示样本数据落在该区间的频率越大. ( √ )
    2.“幸福感指数”是指某个人主观评价他对自己目前生活状态满意程度的指标,常用区间[0,10]内的一个数来表示,该数越接近10表示满意度越高.现随机抽取10位居民,他们的幸福感指数为5,6,6,6,7,7,8,8,9,10.则这组数据的第80百分位数是(  )
    A.7.5 B.8
    C.8.5 D.9
    C 解析:因为10×80%=8,所以数据5,6,6,6,7,7,8,8,9,10的第80百分位数是×(8+9)=8.5.
    3.某工厂技术人员对三台智能机床的生产数据进行统计,发现甲车床每天生产次品数的平均数为1.4,标准差为1.08;乙车床每天生产次品数的平均数为11,标准差为0.85;丙车床每天生产次品数的平均数为1.1,标准差为0.78.由以上数据可以判断生产性能最好且较稳定的为(  )
    A.无法判断 B.甲车床
    C.乙车床 D.丙车床
    D 解析:因为1.1<1.4<11,0.78<0.85<1.08,所以可以判断生产性能最好且较稳定的为丙车床.
    4.从某网络平台推荐的影视作品中抽取400部,统计其评分数据,将所得400个评分数据分为8组:[66,70),[70,74),…,[94,98],并整理得到如下的频率分布直方图,则评分在区间[82,86)内的影视作品数量是(  )

    A.20 B.40
    C.64 D.80
    D 解析:由频率分布直方图知,评分在区间[82,86)内的影视作品的频率为(86-82)×0.05=0.2,故评分在区间[82,86)内的影视作品数量是400×0.2=80.
    5.已知样本量为200,在样本的频率分布直方图中,共有n个小长方形.若中间一个小长方形的面积等于其余(n-1)个小长方形面积和的,则该组的频数为_________.
    50 解析:设除中间一个小长方形外的(n-1)个小长方形面积的和为p,则中间一个小长方形面积为p.由题意,得p+p=1,所以p=,则中间一个小长方形的面积为p=,200×=50,即该组的频数为50.


    考点1 统计图表及其应用——综合性

    习近平总书记强调:“一个忘记来路的民族必定是没有出路的民族,一个忘记初心的政党必定是没有未来的政党.”某学校利用学习强国APP安排教职工(共120人)在线学习党史知识.其教职工年龄情况和每周在线学习时长达3小时的情况分别如图(1)和图(2)所示,则下列说法正确的是(  )

    A.该学校老年教职工在线学习党史时长达3小时的人数最多
    B.该学校青年教职工在线学习党史时长达3小时的人数最多
    C.该学校老年教职工在线学习党史时长达3小时和青年教职工在线学习党史时长达3小时的人数之和与中年教职工在线学习党史时长达3小时的人数相等
    D.该学校在线学习党史时长达3小时的人数占总人数的80%
    D 解析:由图可知,该学校老年教职工在线学习党史时长达3小时的人数是120×30%×90%=32.4,中年教职工在线学习党史时长达3小时的人数是120×(1-30%-30%)×80%=38.4,青年教职工在线学习党史时长达3小时的人数是120×30%×70%=25.2.
    该学校在线学习党史时长达3小时的人数占总人数的比例为30%×90%+40%×80%+30%×70%=80%,故选项A、B、C错误,选项D正确.
    (2021·河南模拟)电力工业是一个国家的经济命脉,它在国民经济和人民生活中占有极其重要的地位.目前开发的电力主要是火电、水电、风电、核电、太阳能发电,其中,水电、风电、太阳能发电属于可再生能源发电.如图所示的是2020年各电力行业发电量及增幅的统计图,则下列说法错误的是(  )

    A.其中火电发电量大约占全行业发电量的71%
    B.在火电、水电、风电、核电、太阳能发电量中,比上一年增幅最大的是风电
    C.火电、水电、风电、核电、太阳能发电的发电量的极差是7.28
    D.以上可再生能源发电量的增幅均跑赢全行业整体增幅
    C 解析:对于A,火电发电量大约占全行业发电量的≈71%,故选项A正确;对于B,由折线图可知,风电增幅为10.50%,是增幅最大的,故选项B正确;对于C,火电、水电、风电、核电、太阳能发电的发电量的极差是5.28-0.14=5.14,故选项C错误;对于D,由折线图可得,可再生能源发电量的增幅均跑赢全行业整体增幅,故选项D正确.故选C.

    统计图表问题的解决方法
    (1)首先要准确地识图,即要明确统计图表中纵轴、横轴及折线、区域等所表示的意义,尤其注意数字变化的趋势等.
    (2)其次要准确地用图,会根据统计图表中的数字计算样本的数字特征,会用统计图表估计总体.

    1.(2022·靖远模拟)如图是我国2011-2020年载货汽车产量及增长趋势统计图.针对这10年的数据,下列说法错误的是(  )

    A.与2019年相比较,2020年我国载货汽车产量同比增速不到15%
    B.这10年中,载货汽车的同比增速有增有减
    C.这10年我国载货汽车产量的极差超过150万辆
    D.这10年我国载货汽车产量的中位数不超过340万辆
    D 解析:对于A,2020年的同比增速为×100%≈13.37%<15%,故A正确;
    对于B,这10年中,载货汽车的同比增速有增有减,故B正确;
    对于C,由图知极差为423.9-273.5=150.4(万辆)>150(万辆),故C正确;
    对于D,将这10年载货汽车产量由小到大排列,
    得:273.5,303.5,312.9,333.8,339.9,344.1,356.7,371.7,373.9,423.9,
    故中位数为=342(万辆),故D错误.
    2.(多选题)某企业对本企业1 644名职工关于复工的态度进行调查,调查结果如图所示.下列结论成立的是(  )

    A.x=0.384
    B.从该企业中任取一名职工,该职工是倾向于在家办公的概率为0.178
    C.不到80名职工倾向于继续申请休假
    D.倾向于复工后在家办公或在公司办公的职工超过986名
    BD 解析:由图表知x%=1-5.1%-17.8%-42.3%,得x=34.8,故A错误.
    由图表知在家办公的人员占17.8%,故B正确.
    由1 644×5.1%=83.844>80,
    所以超过80名职工倾向于继续申请休假,故C错误.
    又1 644×(17.8%+42.3%)=988.044>986,
    所以超过986名职工倾向于在家办公或在公司办公,D正确.
    综上可知,正确的结论为BD.

    考点2 频率分布直方图——应用性

    一家保险公司决定对推销员实行目标管理,即给推销员确定一个具体的销售目标.确定的销售目标是否合适,直接影响到公司的经济效益.如果目标定得过高,多数推销员完不成任务,会使推销员失去信心;如果目标定得太低,将不利于挖掘推销员的工作潜力.该保险公司随机抽取50名保险推销员,统计了其2020年的月均推销额(单位:万元),将数据按照[12,14),[14,16),…,[22,24]分成6组,制成频率分布直方图如下,其中[14,16)组比[12,14)组的频数多4.

    (1)求频率分布直方图中a和b的值;
    (2)为调动推销员的积极性,公司设计了两种奖励方案.
    方案一:奖励月均推销额进入前60%的员工;方案二:奖励月均推销额达到或超过平均数(同一组中的数据用该组区间中点值为代表)的员工.你认为哪种方案更好?
    解:(1)由频率分布直方图的性质,得图中所有小长方形的面积之和等于1.
    又因为[14,16)组比[12,14)组的频数多4,
    所以
    解得a=0.03,b=0.07.
    (2)方案一,奖励月均推销额进入前60%的员工,
    因为样本量为50,所以能获得奖励员工人数为50×60%=30.
    方案二,奖励月均推销额达到或超过平均数,
    根据频率分布直方图,可得月均推销额的平均数为=0.03×2×13+0.07×2×15+0.12×2×17+0.14×2×19+0.1×2×21+0.04×2×23=18.32.
    月均推销额低于18万的频率为2×(0.03+0.07+0.12)=0.44.
    因为本次抽样样本量为50名保险推销员,
    所以月均推销额低于18万的人数为50×0.44=22,
    所以月均推销额达到或超过18万的人数为28.
    综上所述,对比两种奖励方案,应选方案一,更多人员获得奖励.

    1.频率分布直方图的性质
    (1)小长方形的面积=组距×=频率.
    (2)各小长方形的面积之和等于1.
    (3)小长方形的高=,所有小长方形的高的和为.
    2.要理解并记准频率分布直方图与众数、中位数、百分位数及平均数的关系.

    1.(2021·商丘期末)某校高三年级共有600名学生选修地理,某次考试地理成绩均在60~90分之间,分数统计后绘成频率分布直方图,如图所示,则成绩在[70,85)分的学生人数为(  )

    A.380    B.420    C.450    D.480
    C 解析:成绩在[70,85)分的学生人数为600×5×(0.04+0.06+0.05)=450.故选C.
    2.从某小区随机抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如图所示,由此可估计该小区居民户月用电量的平均值大约为________度.

    186 解析:设用电量在200到250度之间的频率为a,
    则有50×(0.002 4+0.003 6+0.006+a+0.002 4+0.001 2)=1,解得a=0.004 4.
    由频率分布直方图可知,该小区居民户月用电的平均值为:
    50×(75×0.002 4+125×0.003 6+175×0.00 6+225×0.004 4+275×0.002 4+325×0.001 2)=186(度).

    考点3 总体集中趋势的估计——综合性

    考向1 百分位数、平均数、中位数及众数
    已知甲、乙两组按顺序排列的数据,甲组:27,28,37,m,40,50;乙组:24,n,34,43,48,52.若这两组数据的第20百分位数、第50百分数分别对应相等,则等于(  )
    A. B.
    C. D.
    B 解析:因为20%×6=1.2>1,50%×6=3,
    所以第20百分位数为n=28,第50百分位数为=,所以m=40,所以==.故选B.
    已知数据x1+1,x2+2,x3+3,x4+4,x5+5的平均数是23,则数据3x1+1,3x2+1,3x3+1,3x4+1,3x5+1的平均数是(  )
    A.61 B.64
    C.67 D.70
    A 解析:因为数据x1+1,x2+2,x3+3,x4+4,x5+5的平均数是23,
    所以x1+x2+x3+x4+x5=5×23-15=100,
    所以(3x1+1)+(3x2+1)+(3x3+1)+(3x4+1)+(3x5+1)=3(x1+x2+x3+x4+x5)+5=305,所以数据3x1+1,3x2+1,3x3+1,3x4+1,3x5+1的平均数是=61.
    故选A.

    1.求平均数时要注意数据的个数,不要重计或漏计.
    2.求中位数时一定要先对数据按大小排序,若最中间有两个数据,则中位数是这两个数据的平均数.
    3.若有两个或两个以上的数据出现得最多,且出现的次数一样,则这些数据都叫众数;若一组数据中每个数据出现的次数一样多,则没有众数.
    4.计算一组n个数据的第p百分位数的方法是:先按从小到大排列原始数据,再计算i=n×p%.若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.
    考向2 与频率分布直方图有关的数字特征的计算
    (多选题)某城市在创建文明城市的活动中,为了解居民对“创建文明城市”的满意程度,组织居民给活动打分(分数为整数,满分100分),从中随机抽取一个容量为100的样本,发现数据均在[40,100]内.现将这些分数分成6组并画出样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形,则下列说法正确的是(  )

    A.频率分布直方图中第三组的频数为10人
    B.根据频率分布直方图估计样本的众数为75分
    C.根据频率分布直方图估计样本的中位数为75分
    D.根据频率分布直方图估计样本的平均数为75分
    ABC 解析:分数在[60,70)内的频率为1-10×(0.005+0.020+0.030+0.025+0.010)=0.10,所以第三组[60,70)的频数为100×0.10=10(人),故A正确.
    因为众数的估计值是频率分布直方图中最高小长方形的中点,从图中可看出众数的估计值为75分,故B正确.
    因为(0.005+0.020+0.010)×10=0.35<0.5,
    (0.005+0.020+0.010+0.03)×10=0.65>0.5,所以中位数位于[70,80),设中位数为x,则0.35+0.03(x-70)=0.5,解得x=75,所以中位数的估计值为75,故C正确.
    样本平均数的估计值为45×10×0.005+55×10×0.020+65×10×0.010+75×10×0.03+85×10×0.025+95×10×0.01=73(分),故D错误.

    用样本估计总体是统计的基本方法:
    (1)最高的小长方形的中点横坐标即为众数.
    (2)中位数左边和右边的小长方形的面积是相等的.
    (3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.

    1.某病患者8人的潜伏期(天)分别为3,3,8,4,2,7,10,18,则它们的第50百分位数为(  )
    A.4或7 B.4
    C.7 D.5.5
    D 解析:将3,3,8,4,2,7,10,18由小到大排列为2,3,3,4,7,8,10,18,第50百分位数即为中位数,这组数的中位数为×(4+7)=5.5.
    2.某市进行了一次校际数学竞赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在[40,90]之间,其得分的频率分布直方图如图,则下列结论错误的是(  )

    A.得分在[40,60)之间的共有40人
    B.从这100名参赛者中随机选取1人,其得分在[60,80)的概率为0.5
    C.这100名参赛者得分的中位数为65
    D.a=0.005
    C 解析:由频率分布直方图,可得A中,得分在[40,60)之间共有[1-(0.03+0.02+0.01)×10]×100=40(人),所以A正确.B中,从100名参赛者中随机选取1人,其得分在[60,80)中的概率为(0.03+0.02)×10=0.5,所以B正确.D中,由频率分布直方图的性质,可得(a+0.035+0.030+0.020+0.010)×10=1,解得a=0.005,所以D正确.C中,前2个小长方形面积之和为0.4,前3个小长方形面积之和为0.7,所以中位数在[60,70],这100名参赛者得分的中位数为60+×10≈63.3,所以C不正确.
    ,
    考点4 总体离散程度的估计——基础性

    考向1 方差与标准差的计算
    (2022·溧阳期末)已知数据x1,x2,…,x10的平均数为2,方差为3,那么数据2x1+1,2x2+1,…,2x10+1的平均数和方差分别为(  )
    A.2,3 B.5,6
    C.5,12 D.4,12
    C 解析:因为数据x1,x2,…,x10的平均数为2,方差为3,所以数据2x1+1,2x2+1,…,2x10+1的平均数为2×2+1=5,方差为22×3=12.
    一组数据由10个数组成,将其中一个数由6改为3,另一个数由2改为5,其余数不变,得到新的10个数,则新数据的方差相比原数据的方差的减小值为(  )
    A.0.4 B.0.5
    C.0.6 D.0.7
    C 解析:一个数由6改为3,另一个数由2改为5,故该数据的平均数不变,
    设没有改变的八个数分别为x1,x2,x3,x4,x5,x6,x7,x8.
    因为原数据的方差s==[(x1-)2+(x2-)2+(x3-)2+(x4-)2+(x5-)2+(x6-)2+(x7-)2+(x8-)2+(6-)2+(2-)2],
    新数据的方差s=[(x1-)2+(x2-)2+(x3-)2+(x4-)2+(x5-)2+(x6-)2+(x7-)2+(x8-)2+(3-)2+(5-)2],
    所以s-s=[(3-)2+(5-)2-(6-)2-(2-)2]=×(-6)=-0.6,所以新数据的方差相比原数据的方差的减少值为0.6.

    1.方差的简化计算公式:s2=[(x+x+…+x)-n2]=(x+x+…+x)-2.
    2.方差的运算性质:如果数据x1,x2,…,xn的方差为s2,则①新数据x1+b,x2+b,…,xn+b的方差仍是s2.②新数据ax1,ax2,…,axn的方差是a2s2.③新数据ax1+b,ax2+b,…,axn+b的方差是a2s2.
    3.标准差(或方差)是用来表示稳定性,标准差(或方差)越大,数据的离散程度就越大,也就是越不稳定;标准差(或方差)越小,数据的离散程度就越小,也就是越稳定.
    考向2 分层随机抽样的方差
    (2021·广州期末)为了解学生的课外阅读情况,某校采用按样本量比例分配的分层随机抽样对高中三个年级的学生进行平均每周课外阅读时间(单位:小时)的调查,所得样本数据如下:
    年级
    抽样人数
    样本平均数
    样本方差
    高一
    40
    5
    3.5
    高二
    30
    2
    2
    高三
    30
    3
    s
    已知高中三个年级学生的总样本平均数为4.1,总样本方差为3.14,则高二年级学生的样本平均数2=________,高三年级学生的样本方差s=________.
    4 1.5 解析:由高中三个年级学生的总样本平均数为4.1,
    可得=4.1,解得2=4.
    因为总样本方差为3.14,
    所以×[3.5+(5-4.1)2]+×[2+(4-4.1)2]+×[s+(3-4.1)2]=3.14,解得s=1.5.

    1.设样本中不同层的平均数分别为1,2,…,n,方差分别为s,s,…,s,相应的权重分别为w1,w2,…,wn,则这个样本的方差为,其中为样本平均数.
    2.计算分层随机抽样的方差s2的步骤
    (1)确定1,2,…,n,s,s,…,s ,w1,w2,…,wn.
    (2)确定.
    (3)应用公式计算s2.

    (2022·肇庆模拟)在对某中学高一学生体重的调查中,采取按样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男生30人,其平均数和方差分别为55和15,抽取了女生20人,其平均数和方差分别为45和20.则总样本的平均数为______,方差为________.
    51 41 解析:总样本的平均数为×55+×45=51,总样本的方差为×[15+(55-51)2]+×[20+(45-51)2]=41.

    相关学案

    高考数学一轮复习第10章第2课时用样本估计总体学案: 这是一份高考数学一轮复习第10章第2课时用样本估计总体学案,共29页。

    2024届高考数学一轮复习第9章第2节用样本估计总体学案: 这是一份2024届高考数学一轮复习第9章第2节用样本估计总体学案,共27页。学案主要包含了教材概念·结论·性质重现,基本技能·思想·活动经验等内容,欢迎下载使用。

    高考数学统考一轮复习第11章11.4用样本估计总体学案: 这是一份高考数学统考一轮复习第11章11.4用样本估计总体学案,共10页。学案主要包含了知识重温,小题热身等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高考数学一轮复习第9章第2节用样本估计总体学案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map