2023届四川省名校联考高考仿真测试(三)理科数学试题(无答案)
展开2023届四川省名校联考高考仿真测试(三)理科数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.复数z满足,则( )
A. B. C. D.
2.有一组样本数据:5,6,6,6,7,7,8,8,9,9.则关于该组数据的下列数字特征中,数值最大的为( )
A.平均数 B.第50百分位数 C.极差 D.众数
3.已知,且,则的值为( )
A. B. C. D.
4.若随机变量从正态分布,则,.现有40000人参加语文考试,成绩大致服从正态分布,则可估计本次语文成绩在116分以上的学生人数为( )
A.3640 B.1820 C.910 D.455
5.Sigmoid函数是一个在生物学中常见的S型函数,也称为S型生长曲线,常被用作神经网络的激活函数.记为Sigmoid函数的导函数,则下列结论正确的是( )
A.
B.函数是奇函数
C.Sigmoid函数的图象是关于中心对称
D.Sigmoid函数是单调递增函数,函数是单调递减函数
6.已知,分别为双曲线:的左,右焦点,点P为双曲线渐近线上一点,若,,则双曲线的离心率为( )
A. B. C. D.2
7.已知函数及其导函数的定义域均为,记,若为奇函数,为偶函数,则( )
A.2021 B.2022 C.2023 D.2024
8.在三棱锥中,,,设侧面与底面的夹角为,若三棱锥的体积为,则当该三棱锥外接球表面积取最小值时,( )
A. B. C. D.4
二、未知
9.某校为了解学生每个月在图书馆借阅书籍的数量,图书管理员甲抽取了一个容量为100的样本,并算得样本的平均数为5,方差为9;图书管理员乙也抽取了一个容量为100的样本,并算得样本的平均数为7,方差为16.若将两个样本合在一起组成一个容量为200的新样本,则新样本数据的( )
A.平均数为7 B.平均数为6.5
C.方差为12.5 D.方差为13.5
三、单选题
10.记不等式组表示的平面区域为,命题;命题.给出了四个命题:①;②;③;④,这四个命题中,所有真命题的编号是
A.①③ B.①② C.②③ D.③④
11.设为等差数列的前项和,且,都有.若,则( )
A.的最小值是 B.的最小值是
C.的最大值是 D.的最大值是
12.函数和有相同的最大值,直线与两曲线和恰好有三个交点,从左到右三个交点横坐标依次为,则下列说法正确的是( )
①;②;③;④
A.①③④ B.①②④ C.①②③ D.②③④
四、未知
13.的展开式中,常数项为________.
五、双空题
14.甲袋中有3个红球和2个白球,乙袋中有4个红球和1 个白球(除颜色外,球的大小、形状完全相同).先从甲袋中随机取出1球放入乙袋,再从乙袋中随机取出1球.分别以、表示由甲袋取出的球是红球和白球的事件,以表示由乙袋取出的球是红球的事件,则________,________.
六、填空题
15.已知O为坐标原点,F为抛物线的焦点,过点F作倾斜角为60°的直线与抛物线交于A,B两点(其中点A在第一象限).若直线AO与抛物线的准线l交于点D,设,的面积分别为,,则______.
16.已知三角形数表:
现把数表按从上到下、从左到右的顺序展开为数列,记此数列的前项和为.若,则的最小值是_____.
七、解答题
17.在中,角A,B,C所对的边分别为a,b,c,已知,,.
(1)求的值;
(2)求的面积.
18.如图,等腰梯形中,//,,,为中点,以为折痕把折起,使点到达点的位置(平面).
(1)证明:;
(2)若直线与平面所成的角为,求平面与平面夹角的余弦值.
19.为了调动大家积极学习党的二十大精神,某市举办了党史知识的竞赛.初赛采用“两轮制”方式进行,要求每个单位派出两个小组,且每个小组都要参加两轮比赛,两轮比赛都通过的小组才具备参与决赛的资格.某单位派出甲、乙两个小组参赛,在初赛中,若甲小组通过第一轮与第二轮比赛的概率分别是,,乙小组通过第一轮与第二轮比赛的概率分别是,,且各个小组所有轮次比赛的结果互不影响.
(1)若该单位获得决赛资格的小组个数为X,求X的数学期望;
(2)已知甲、乙两个小组都获得了决赛资格,决赛以抢答题形式进行.假设这两组在决赛中对每个问题回答正确的概率恰好是各自获得决赛资格的概率.若最后一道题被该单位的某小组抢到,且甲、乙两个小组抢到该题的可能性分别是45%,55%,该题如果被答对,计算恰好是甲小组答对的概率.
20.设A,B是椭圆上异于的两点,且直线AB经过坐标原点,直线PA,PB分别交直线于C,D两点.
(1)求证:直线PA,AB,PB的斜率成等差数列;
(2)求面积的最小值.
21.已知函数.
(1)若且函数在上是单调递增函数,求的取值范围;
(2)设的导函数为,若满足,证明:.
22.在平面直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数).已知曲线与,正半轴分别相交于两点.
(1)写出曲线的极坐标方程,并求出两点的直角坐标;
(2)若过原点且与直线垂直的直线与曲线交于点,与直线交于点,求线段的长度.
23.已知函数,.
(1)若,,求实数的取值范围;
(2)求证:R,.
2023届四川省名校联考高考仿真测试(五)理科数学试题(含解析): 这是一份2023届四川省名校联考高考仿真测试(五)理科数学试题(含解析),共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023届四川省名校联考高考仿真测试(三)理科数学试题(含解析): 这是一份2023届四川省名校联考高考仿真测试(三)理科数学试题(含解析),共24页。试卷主要包含了单选题,填空题,双空题,解答题等内容,欢迎下载使用。
四川省2023届名校联考高考仿真测试(四)理科数学试题(无答案): 这是一份四川省2023届名校联考高考仿真测试(四)理科数学试题(无答案),共6页。试卷主要包含了单选题,未知,填空题,解答题等内容,欢迎下载使用。