- 2015年淄博市中考数学真题及解析 试卷 0 次下载
- 2016年淄博市中考数学真题及解析 试卷 0 次下载
- 2017年淄博市中考数学真题及解析 试卷 0 次下载
- 2018年淄博市中考数学真题及解析 试卷 0 次下载
- 2022年山东省淄博市中考数学试卷 试卷 0 次下载
2022年山东省淄博市中考数学试卷参考答案及解析
展开数学试题参考答案及评分标准
一、选择题:本大题共12个小题,每小题5分,共60分。
题目 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
题号 | A | D | C | D | B | A | C | C | D | B | A | B |
二、填空题:本大题共5个小题,每小题4分,共20分。
13.a≥5 14.x(x+3)(x—3) 15.(1,3) 16.—2 17.(—2023,2022)
三、解答题:本大题共7个小题,共70分。
18.(本题满分8分)
解:整理方程组得,·········································2分
①×2—②得—7y=7,
y=1,····································································4分
把y=1代入①得x—2=3,
解得x=5,································································6分
∴方程组的解为. ··················································8分
19.(本题满分8分)
证明:∵△ABC是等腰三角形,
∴∠EBC=∠DCB,·······················································2分
在△EBC与△DCB中,
∴BE=CD,BC=CB
∴△EBC≌△DCB(SAS),··················································6分
∴BD=CE.······························································8分
20.(本题满分10分)
解:(1)将点A ( 1,2 )代入y =,得m=2,
∴双曲线的表达式为:y=,···············································1分
把A(1,2)和B(4,0)代入y=kx+b得:
y=,解得:,·········································3分
∴直线的表达式为:y=x+;·········································4分
(2)联立 ,解得,或,·························5分
∵点A 的坐标为(1,2),
∴点B的坐标为(3,), ···············································6分
∵S△AOB= S△AOB —S△AOB=OC·— OC·
=×4×2—×4×
=,
∴△AOB的面积为; ···················································8分
(3)1<m<3.····························································10分
21.(本题满分10分)
解:(1)120 99 ························································4分
(2)如图:
··············8分
(3)把“礼仪”“陶艺”“园艺”“厨艺”及“编程”等五门校本课程分别记为A、B、C、D、E,画树状图如下:
共有25种等可能的结果,其中小刚和小强两人恰好选到同一门课程的结果有5种,
∴小刚和小强两人恰好选到同—门课程的概率P=.
············································10分
22.(本题满分10分)
解:小明能运用以上数据,得到综合楼的高度,理由如下:
作EG⊥AB,垂足为G,作AH⊥CD,垂足为H,如图:
····················2分
由题意知,EG= BF= 40米,EF= BG= 12.88米,∠HAE= 16°= ∠AEG= 16°,∠CAH =9°,
在Rt△AEG中,
tan ∠AEG=,
∴tan 16°=,即0.287≈,············································4分
∴AG = 40×0.287=11.48(米),
∴AB = AG+BG=11.48+12.88= 24.36(米),····································6分
∴HD= AB =24.36米,
在Rt△ACH中,AH =BD= BF+FD=80米,
tan∠CAH =,
∴tan 9°= ,即0.158≈,············································8分
∴CH =80×0.158= 12.64(米),
∴CD=CH+HD = 12.64+24.36= 37.00(米),
则综合楼的高度约是37.00米.·············································10分
注:结果精确到0.01米,须保留两位小数,未保留最后一步不得分!
23.(本题满分12分)
解:(1)证明:由题意得,AI、BI分别平分∠BAC、∠ABC,
∴∠BAD=∠CAD,∠ABI=∠CBI,············································2分
又∵∠CAD=∠CBD,
∴∠BAD=∠CBD,
∵∠BID=∠BAD+∠ABI,∠IBD=∠CBI+∠CBD,
∴∠BID=∠IBD,
∴BD = DI;·······························································4分
(2)证明:如图,连接OD,
∵∠CAD=∠BAD,
∴,
∴OD⊥BC,·······································5分
∵DE∥BC,
∴OD⊥DE,······························································6分
∴DE是⊙O的切线;·······················································7分
(3)证明:如图,连接BH,CH,
∵GH是⊙O的切线,
∴∠CHG =∠HBG,·····························8分
∵∠CGH =∠BGH,
∴△HCG∽△BHG,
∴GH2=BG•CG,···························································9分
∵AD∥GF,∴∠AFG =∠CAD,
∵∠CAD =∠FBG,∴∠FBG =∠AFG, ·····································10分
∵∠CGF =∠BGF,
∴△CGF∽△FGB,
∴FG2=BG•CG,··························································11分
∴FG=HG.······························································12分
24.(本题满分12分)
解:(1)∵抛物线的顶点D(1,4)
∴根据顶点式,抛物线的解析式为y =—(x—1)2+4=—x2+2x+3;
············2分
(2)如图,设直线l交x轴于点T,连接PT,BD,BD交PM于点J.
设P(m,—m2+2m+3).···························3分
点D(1,4)在直线l:y=x+t上,
∴4=x+t,
∴t=,
∴直线DT的解析式为y=x+,···········································4分
令y=0,得到x=—2,
∴T(—2,0),
∴OT=2,
∵B(3,0),
∴OB=3,∴BT=5,························································5分
∵DT==5,
∴TD=TB,
∵PM⊥BT,PN⊥DT,
∴S四边形DTBP =S△PDT +S△PBT =×DT×PN+×TB×PM=(PM+PN),
∴四边形DTBP的面积最大时,PM+PN的值最大,
········································································6分
∵D(1,4),B(3,0),
∴直线BD的解析式为y=—2x+6,···········································7分
∴J(m,—2m+6),
∴PJ=—m2+4m—3,
∵S四边形DTBP =S△DTB +S△BDP =×5×4+×(—m2+4m—3)×2=—m2+4m+7=—(m—2)2+11
∵—1<0,∴m=2时,四边形DTBP的面积最大,最大值为11,
∴PM+PN的最大值=×11=;··········································8分
(3)四边形AFBG的面积不变.
理由:如图,设P(m,—m2+2m+3),················9分
∵A(—1,0),B(3,0),
∴直线AP的解析式为y=—(m—3)x—m+3,··········10分
∴E(1,—2m+6),·
∵E,G关于x轴对称,
∴G(1,2m—6),
∴直线PB的解析式y=—(m+1)x+3(m+1),································11分
∴F(1,2m+2),
∴GF=2m+2—(2m—6)=8,
∴四边形AFBG的面积=×AB×FG=×4×8=16.
∴四边形AFBG的面积是定值.············································12分
数学试题参考解析
一、选择题
1.【答案】A
【解析】∵实数a的相反数是—1,∴a=1,∴a+1=2.
2.【答案】D
【解析】A选项不是中心对称图形,也不是轴对称图形,故此选项不合题意;B选项不是中心对称图形,是轴对称图形,故此选项不合题意;C选项不是中心对称图形,是轴对称图形,故此选项不合题意;D选项既是轴对称图形,又是中心对称图形,故此选项符合题意.
3.【答案】C
【解析】因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故A不符合题意;因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故B不符合题意;因为金与题是相对面,榜与名是相对面,所以正方体侧面上的字恰好环绕组成一个四字成语金榜题名,故C符合题意;因为图中两个空白面不是相对面,所以图中的四个字不能恰好环绕组成一个四字成语,故D不符合题意.
4.【答案】D
【解析】中位数为第10个和第11个的平均数= 15,众数为15.
5.【答案】B
【解析】∵AB∥CD,∴∠DFE=∠BAE=50°,
∵CF=EF,∴∠C=∠E,
∵∠DFE=∠C+∠E,∴∠C=∠DFE=×50°=25°.
6.【答案】A
【解析】A选项≈3.1416,B选项≈3.1408,C选项≈3.14,D选项≈3.1428,π≈3.14159≈3.1416,A选项符合题意.
7.【答案】C
【解析】连接AD,如图,
∵AB=AC,∠A=120°,
∴∠B=∠C=30°,由作法得DE垂直平分AC,∴DA=DC=3,
∴∠DAC=∠C=30°,
∴∠BAD=120°—30°=90°,
在Rt△ABD中,∵∠B=30°,∴BD=2AD=6.
8.【答案】C
【解析】原式=4a6b2—3a6b2=a6b2,
9.【答案】D
【分析】设第二次采购单价为x元,则第一次采购单价为(x+10)元,根据单价=总价÷数量,结合总费用降低了15%,采购数量与第一次相同,即可得出:
10.【答案】
【解析】连接AC交BD于O,如图,
∵四边形ABCD为菱形,
∴AD∥BC,CB=CD=AD=4,AC⊥AB,BO=OD,OC=AO,
∵E为AD边的中点,∴DE=2,
∵∠DEF=∠DFE,∴DF=DE=2,
∵DE∥BC,∴∠DEF=∠BCF,
∵∠DFE=∠BFC,∴∠BCF=∠BFC,∴BF=BC=4,∴BD=BF+DF=4+2=6,∴OB=OD=3,
在Rt△BOC中,OC==
∴AC=2OC=2
∴菱形ABCD的面积=AC·BD=×2×6=6
11.【答案】A
【解析】∵二次函数y=ax2+2的图象经过P(1,3),∴3=a+2,∴a=1,
∴y=x2+2,∵Q(m,n)在y=x2+2上,∴n=m2+2,∴n2—4m2—4n+9=(m2+2)2—4m2—4(m2+2)+9=m4—4m2+5=(m2—2)2+1,∵(m2—2)≥0,∴n2—4m2—4n+9的最小值为1.
12.【答案】B
【解析】如图,连接AI,BI,CI,DI,过点I作IT⊥AC于点T.
∵I是△ABD的内心,∴∠BAI=∠CAI,
∵AB=AC,AI=AI,∴△BAI≌△CAI(SAS),∴IB=IC,
∵∠ITD=∠IED=90°,∠IDT=∠IDE,DI=DI,
∴△IDT≌△IDE(AAS),∴DE=DT,IT=IE,
∵∠BEI=∠CTI=90°,
∴Rt△BEI≌Rt△CTI(HL),∴BE=CT,
设BE=CT=x,∵DE=DT,
∴10—x=x—4,∴x=7,∴BE=7.
二、填空题
13.【答案】a≥5
【解析】∵a-5≥0,∴a≥5.
14.【答案】x(x+3)(x—3)
【解析】原式=x(x2-9)= x(x+3)(x—3).
15.【答案】(1,3)
【解析】∵点A(—3,4)的对应点是A1(2,5),∴点B(—4,2)的对应点B1的坐标是(1,3).
16.【答案】—2
【解析】原式==—2.
17.【答案】(—2023,2022)
【解析】∵将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,∴D1(1,2),
∵再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……
∴D2(-3,2),D3(-3,-4),D4(5,-4),D5(5,6),D6(-7,6),……,
观察发现:每四个点一个循环,D4n+2(-4n-3,4n+2),
∵2022=4×505+2,
∴D2022(-2023,2022).
山东省淄博市中考数学试卷(含解析版): 这是一份山东省淄博市中考数学试卷(含解析版),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学中考复习 山东省淄博市2020年中考数学试卷解析版: 这是一份初中数学中考复习 山东省淄博市2020年中考数学试卷解析版,共21页。试卷主要包含了答题前,考生务必用0,非选择题必须用0,化简+的结果是等内容,欢迎下载使用。
2021年山东省淄博市中考数学试卷: 这是一份2021年山东省淄博市中考数学试卷,共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。