高考数学二轮复习微点4 阿波罗尼斯圆与圆锥曲线(2份打包,原卷版+解析版)
展开专题1 阿波罗尼斯圆及其应用 微点4 阿波罗尼斯圆与圆锥曲线
专题1 阿波罗尼斯圆及其应用
微点4 阿波罗尼斯圆与圆锥曲线
【微点综述】
有些涉及圆锥曲线与圆的综合题,其中已知条件含有阿波罗尼斯圆的背景,可以结合阿波罗尼斯圆以及圆锥曲线的几何性质解决问题.
【典例刨析】
1.设双曲线的左右两个焦点分别为、,是双曲线上任意一点,过的直线与的平分线垂直,垂足为,则点的轨迹曲线的方程________;在曲线上,点,,则的最小值________.
(2022·广东梅州·高二月考)
2.希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系中,,,点是满足的阿氏圆上的任一点,则该阿氏圆的方程为____;若点为抛物线上的动点,在轴上的射影为,则的最小值为______.
(2022安徽黄山·一模)
3.在平面上给定相异两点A,B,设点P在同一平面上且满足,当 且时,P点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗尼斯圆.现有双曲线, 分别为双曲线的左、右焦点,A,B为双曲线虚轴的上、下端点,动点P满足, 面积的最大值为4.点M,N在双曲线上,且关于原点O对称,Q是双曲线上一点,直线和的斜率满足 ,则双曲线方程是 ______________ ;过的直线与双曲线右支交于C,D两点(其中C点在第一象限),设点、分别为 、的内心,则的范围是 ____________ .
(2022吉林·梅河口五中学高三期末)
4.古希腊数学家阿波罗尼斯(约公元前262-190年),与欧几里得、阿基米德并称古希腊三大数学家;他的著作《圆锥曲线论》是古代数学光辉的科学成果,它将圆锥曲线的性质网络殆尽,几乎使后人没有插足的余地.他发现“平面内到两个定点的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.比如在平面直角坐标系中,、,则点满足所得点轨迹就是阿氏圆;已知点,为抛物线上的动点,点在直线上的射影为,为曲线上的动点,则的最小值为___________.则的最小值为____________.
(2022湖北·武汉新洲区城关高中高二开学考试)
5.阿波罗尼斯(古希腊数学家,公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数(,且)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆,,为椭圆的长轴端点,,为椭圆的短轴端点,动点满足,面积的最大值为6,面积的最小值为1,则椭圆的方程为_________
(2022·河北·衡水二中高二期中)
6.公元前三世纪,阿波罗尼斯在《圆锥曲线论》中明确给出了椭圆的一个基本性质:如图,过椭圆上任意一点P(不同于A,B)作长轴的垂线,垂足为Q,则为常数k.若,则该椭圆的离心率为______.
(2022江苏·高二单元测试)
7.阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线》一书中.阿波罗尼斯圆是他的研究成果之一,指的是已知动点与两定点,的距离之比,是一个常数,那么动点的轨迹就是阿波罗尼斯圆,圆心在直线上.已知动点的轨迹是阿波罗尼斯圆,其方程为,定点分别为椭圆的右焦点与右顶点,且椭圆的离心率为.
(1)求椭圆的标准方程;
(2)如图,过右焦点斜率为的直线与椭圆相交于,(点在轴上方),点,是椭圆上异于,的两点,平分,平分.
①求的取值范围;
②将点、、看作一个阿波罗尼斯圆上的三点,若外接圆的面积为,求直线的方程.
【针对训练】
(2022·安徽皖北联盟高二联考)
8.古希腊数学家阿波罗尼奥斯采用平面切割圆锥的方法来研究圆锥曲线,用垂直于圆锥轴的平面去截圆雉,得到的截面是圆;把平面再渐渐倾斜得到的截面是椭圆.若用面积为128的矩形截某圆锥得到椭圆,且与矩形的四边相切.设椭圆在平面直角坐标系中的方程为,下列选项中满足题意的方程为( )
A. B. C. D.
(2022·河南·新蔡一中高二月考)
9.古希腊数学家阿波罗尼斯的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数且的点的轨迹是圆,后人将之称为阿波罗尼斯圆.现有椭圆为椭圆长轴的端点,为椭圆短轴的端点,,分别为椭圆的左右焦点,动点满足面积的最大值为面积的最小值为,则椭圆的离心率为( )
A. B. C. D.
(2022北京八一中学高三期末)
10.古希腊数学家阿波罗尼斯的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地,他证明过这样一个命题:平面内与两定点距离的比为常数(且)的点的轨迹是圆,后人将之称为阿波罗尼斯圆,现有椭圆,、为椭圆长轴的端点,、为椭圆短轴的端点,动点满足,的面积的最大值为,的面积的最小值为,则椭圆的离心率为______.
(2022·广东广州·高二期末)
11.在平面上给定相异两点A,B,点P满足,则当且时,P点的轨迹是一个圆,我们称这个圆为阿波罗尼斯圆.已知椭圆的离心率,A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点P满足,若的面积的最大值为3,则面积的最小值为___________.
(2022湖南·益阳箴言中学高二月考)
12.阿波罗尼斯的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数(且)的点的轨迹是圆,后人将这个圆称为阿氏圆,现有则的面积最大值为______,此时AC的长为______.
(2022·浙江·高三开学考试)
13.公元前3世纪,阿波罗尼奥斯在《圆锥曲线论》中明确给出了椭圆和圆的一个基本性质:如图,过椭圆(或圆)上任意一点P(不同于A,B)作长轴(或直径)AB的一条垂线段,垂足为,则为常数.若此图形为圆,则____________;若,则此图形的离心率为____________.
(2022·湖北·荆门龙泉中学二模)
14.历史上第一个研究圆锥曲线的是梅纳库莫斯(公元前375年-325年),大约100年后,阿波罗尼斯更详尽、系统地研究了圆锥曲线,并且他还进一步研究了这些圆锥曲线的光学性质:如图甲,从椭圆的一个焦点出发的光线或声波,经椭圆反射后,反射光线经过椭圆的另一个焦点,其中法线表示与椭圆C的切线垂直且过相应切点的直线,如图乙,椭圆C的中心在坐标原点,焦点为,由发出的光经椭圆两次反射后回到经过的路程为.利用椭圆的光学性质解决以下问题:
(1)椭圆C的离心率为__________.
(2)点P是椭圆C上除顶点外的任意一点,椭圆在点P处的切线为在l上的射影H在圆上,则椭圆C的方程为__________.
(2022·北京朝阳·高二期末)
15.古希腊数学家阿波罗尼斯发现:平面内到两个定点,的距离之比为定值的点的轨迹是圆.人们将这个圆称为阿波罗尼斯圆,简称阿氏圆.已知点,,动点满足,记动点的轨迹为曲线,给出下列四个结论:
①曲线的方程为;
②曲线上存在点,使得到点的距离为;
③曲线上存在点,使得到点的距离大于到直线的距离;
④曲线上存在点,使得到点与点的距离之和为.
其中所有正确结论的序号是___________.
高考数学二轮复习微点5 阿波罗尼斯球(2份打包,原卷版+解析版): 这是一份高考数学二轮复习微点5 阿波罗尼斯球(2份打包,原卷版+解析版),文件包含高考数学二轮复习微点5阿波罗尼斯球解析版docx、高考数学二轮复习微点5阿波罗尼斯球原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
高考数学二轮复习微点3 阿波罗尼斯圆与向量(2份打包,原卷版+解析版): 这是一份高考数学二轮复习微点3 阿波罗尼斯圆与向量(2份打包,原卷版+解析版),文件包含高考数学二轮复习微点3阿波罗尼斯圆与向量解析版docx、高考数学二轮复习微点3阿波罗尼斯圆与向量原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
高考数学二轮复习微点2 阿波罗尼斯圆的逆用(2份打包,原卷版+解析版): 这是一份高考数学二轮复习微点2 阿波罗尼斯圆的逆用(2份打包,原卷版+解析版),文件包含高考数学二轮复习微点2阿波罗尼斯圆的逆用解析版docx、高考数学二轮复习微点2阿波罗尼斯圆的逆用原卷版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。