所属成套资源:中考数学三轮冲刺《二次函数压轴题》强化练习(含答案)
中考数学三轮冲刺《二次函数压轴题》强化练习十一(含答案)
展开
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习十一(含答案),共14页。
中考数学三轮冲刺《二次函数压轴题》强化练习十一1.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.已知点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,连接AP、PC、CD.(1)求这个抛物线的表达式.(2)点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值.(3)①点M在平面内,当△CDM是以CM为斜边的等腰直角三角形时,求出满足条件的所有点M的坐标;②在①的条件下,点N在抛物线对称轴上,当∠MNC=45°时,求出满足条件的所有点N的坐标. 2.如图,已知直线y=x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过A,C两点,且与x轴的另一个交点为B,对称轴为直线x=﹣1.(1)求抛物线的表达式;(2)D是第二象限内抛物线上的动点,设点D的横坐标为m,求四边形ABCD面积S的最大值及此时D点的坐标;(3)若点P在抛物线对称轴上,是否存在点P,Q,使以点A,C,P,Q为顶点的四边形是以AC为对角线的菱形?若存在,请求出P,Q两点的坐标;若不存在,请说明理由. 3.如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且AB=8dm,外轮廓线是抛物线的一部分,对称轴为y轴,高度OC=8dm.现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm的圆,请说明理由. 4.在平面直角坐标系中,二次函数y=mx2﹣(m+n)x+n(m<0)的图象与y轴正半轴交于A点.(1)求证:该二次函数的图象与x轴必有两个交点;(2)设该二次函数的图象与x轴的两个交点中右侧的交点为点B,若∠ABO=45°,将直线AB向下平移2个单位得到直线l,求直线l的解析式;(3)在(2)的条件下,设M(p,q)为二次函数图象上的一个动点,当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,求m的取值范围. 5.已知抛物线y=a(x﹣2)2+c经过点A(2,0)和C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠A,则△DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)若点P在抛物线上,且=m,试确定满足条件的点P的个数. 6.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴I为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴I上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标. 7.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式? 8.定义:若两个函数的图象关于某一点P中心对称,则称这两个函数关于点P互为“伴随函数”.例如,函数y=x2与y=﹣x2关于原点O互为“伴随函数”.(1)函数y=x+1关于原点O的“伴随函数”的函数解析式为 ,函数y=(x﹣2)2+1关于原点O的“伴随函数”的函数解析式为 ;(2)已知函数y=x2﹣2x与函数G关于点P(m,3)互为“伴随函数”.若当m<x<7时,函数y=x2﹣2x与函数G的函数值y都随自变量x的增大而增大,求m的取值范围;(3)已知点A(0,1),点B(4,1),点C(2,0),二次函数y=ax2﹣2ax﹣3a(a>0)与函数N关于点C互为“伴随函数”,将二次函数y=ax2﹣2ax﹣3a(a>0)与函数N的图象组成的图形记为W,若图形W与线段AB恰有2个公共点,直接写出a的取值范围.
0.中考数学三轮冲刺《二次函数压轴题》强化练习十一(含答案)答案解析 一 、综合题1.解:(1)∵抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),∴抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:a=﹣,故抛物线的表达式为:y=﹣x2﹣x+2;(2)连接OP,设点P(x,﹣x2﹣x+2),∵抛物线y=﹣x2﹣x+2交y轴于点C,∴点C(0,2),则S=S四边形ADCP=S△APO+S△CPO﹣S△ODC==×3×(﹣x2﹣x+2)+×2×(﹣x)﹣×2×1=﹣x2﹣3x+2,∵﹣1<0,S有最大值,∴当x=﹣时,S的最大值为.(3)①如图2,若点M在CD左侧,连接AM,∵∠MDC=90°,∴∠MDA+∠CDO=90°,且∠CDO+∠DCO=90°,∴∠MDA=∠DCO,且AD=CO=2,MD=CD,∴△MAD≌△DOC(SAS)∴AM=DO,∠MAD=∠DOC=90°,∴点M坐标(﹣3,1),若点M在CD右侧,同理可求点M'(1,﹣1);②如图3,∵抛物线的表达式为:y=﹣x2﹣x+2=﹣(x+1)2+;∴对称轴为直线x=﹣1,∴点D在对称轴上,∵MD=CD=M'D,∠MDC=∠M'DC=90°,∴点D是MM'的中点,∵∠MCD=∠M'CD=45°,∴∠MCM'=90°,∴点M,点C,点M'在以MM'为直径的圆上,当点N在以MM'为直径的圆上时,∠M'NC=∠M'MC=45°,符合题意,∵点C(0,2),点D(﹣1,0)∴DC=,∴DN=DN'=,且点N在抛物线对称轴上,∴点N(﹣1,),点N'(﹣1,﹣)延长M'C交对称轴与N'',∵点M'(1,﹣1),点C(0,2),∴直线M'C解析式为:y=﹣3x+2,∴当x=﹣1时,y=5,∴点N''的坐标(﹣1,5),∵点N''的坐标(﹣1,5),点M'(1,﹣1),点C(0,2),∴N''C==M'C,且∠MCM'=90°,∴MM'=MN'',∴∠MM'C=∠MN''C=45°∴点N''(﹣1,5)符合题意,综上所述:点N的坐标为(﹣1,)或(﹣1,﹣)或(﹣1,5). 2.解:(1)当x=0时,y=4,∴C (0,4),当y=0时,x+4=0,∴x=﹣3,∴A (﹣3,0),∵对称轴为直线x=﹣1,∴B(1,0),∴设抛物线的表达式:y=a(x﹣1)(x+3),∴4=﹣3a,∴a=﹣,∴抛物线的表达式为:y=﹣(x﹣1)(x+3)=﹣x2﹣x+4;(2)如图1,作DF⊥AB于F,交AC于E,∴D(m,﹣m2﹣m+4),E(m,m+4),∴DE=﹣m2﹣m+4﹣(m+4)=﹣m2﹣4m,∴S△ADC=DE•OA=(﹣m2﹣4m)=﹣2m2﹣6m,∵S△ABC=8,∴S=﹣2m2﹣6m+8=﹣2(m+)2+12.5,∴当m=﹣时,S最大=12.5,当m=﹣时,y=5,∴D(﹣,5);(3)设P(﹣1,n),∵以A,C,P,Q为顶点的四边形是以AC为对角线的菱形,∴PA=PC,即:PA2=PC2,∴(﹣1+3)2+n2=1+(n﹣4)2,∴n=,∴P(﹣1,),∵xP+xQ=xA+xC,yP+yQ=yA+yC∴xQ=﹣3﹣(﹣1)=﹣2,yQ=4﹣=,∴Q(﹣2,). 3.解:(1)如图1,由题意得:A(﹣4,0),B(4,0),C(0,8),设抛物线的解析式为:y=ax2+8,把B(4,0)代入得:0=16a+8,∴a=﹣,∴抛物线的解析式为:y=﹣x2+8,∵四边形EFGH是正方形,∴GH=FG=2OG,设H(t,﹣t2+8)(t>0),∴﹣t2+8=2t,解得:t1=﹣2+2,t2=﹣2﹣2(舍),∴此正方形的面积=FG2=(2t)2=4t2=4(﹣2+2)2=(96﹣32)dm2;(2)如图2,由(1)知:设H(t,﹣t2+8)(t>0),∴矩形EFGH的周长=2FG+2GH=4t+2(﹣t2+8)=﹣t2+4t+16=﹣(t﹣2)2+20,∵﹣1<0,∴当t=2时,矩形EFGH的周长最大,且最大值是20dm;(3)若切割成圆,能切得半径为3dm的圆,理由如下:如图3,N为⊙M上一点,也是抛物线上一点,过N作⊙M的切线交y轴于Q,连接MN,过点N作NP⊥y轴于P,则MN=OM=3,NQ⊥MN,设N(m,﹣m2+8),由勾股定理得:PM2+PN2=MN2,∴m2+(﹣m2+8﹣3)2=32,解得:m1=2,m2=﹣2(舍),∴N(2,4),∴PM=4﹣1=3,∵cos∠NMP===,∴MQ=3MN=9,∴Q(0,12),设QN的解析式为:y=kx+b,∴,∴,∴QN的解析式为:y=﹣2x+12,﹣x2+8=﹣2x+12,x2﹣2x+4=0,Δ=(﹣2)2﹣4××4=0,即此时N为圆M与抛物线在y轴右侧的唯一公共点,∴若切割成圆,能切得半径为3dm的圆. 4.解:(1)令mx2﹣(m+n)x+n=0,则△=(m+n)2﹣4mn=(m﹣n)2,∵二次函数图象与y轴正半轴交于A点,∴A(0,n),且n>0,又∵m<0,∴m﹣n<0,∴△=(m﹣n)2>0,∴该二次函数的图象与轴必有两个交点;(2)令mx2﹣(m+n)x+n=0,解得:x1=1,x2=,由(1)得<0,故B的坐标为(1,0),又因为∠ABO=45°,所以A(0,1),即n=1,则可求得直线AB的解析式为:y=﹣x+1.再向下平移2个单位可得到直线l:y=﹣x﹣1;(3)由(2)得二次函数的解析式为:y=mx2﹣(m+1)x+1.∵M(p,q) 为二次函数图象上的一个动点,∴q=mp2﹣(m+1)p+1.∴点M关于轴的对称点M′的坐标为(p,﹣q).∴M′点在二次函数y=﹣m2+(m+1)x﹣1上.∵当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,当p=0时,q=1;当p=﹣3时,q=12m+4; 结合图象可知:﹣(12m+4)<2,解得:m>﹣.∴m的取值范围为:﹣<m<0. 5.解:(1)由题意:,解得,∴抛物线的解析式为y=﹣(x﹣2)2+3,∴顶点D坐标(2,3).(2)可能.如图1,∵A(﹣2,0),D(2,3),B(6,0),∴AB=8,AD=BD=5,①当DE=DF时,∠DFE=∠DEF=∠ABD,∴EF∥AB,此时E与B重合,与条件矛盾,不成立.②当DE=EF时,又∵△BEF∽△AED,∴△BEF≌△AED,∴BE=AD=5③当DF=EF时,∠EDF=∠DEF=∠DAB=∠DBA,△FDE∽△DAB,∴=,∴==,∵△AEF∽△BCE∴==,∴EB=AD=,答:当BE的长为5或时,△CFE为等腰三角形.(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,PB.设P[n,﹣(n﹣2)2+3],则S△PBD=S△PBH+S△PDH﹣S△BDH=×4×[﹣(n﹣2)2+3]+×3×(n﹣2)﹣×4×3=﹣(n﹣4)2+,∵﹣<0,∴n=4时,△PBD的面积的最大值为,∵=m,∴当点P在BD的右侧时,m的最大值=,观察图象可知:当0<m<时,满足条件的点P的个数有4个,当m=时,满足条件的点P的个数有3个,当m>时,满足条件的点P的个数有2个(此时点P在BD的左侧). 6.解:(1)∵抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴I为x=﹣1,∴,解得:.∴二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4);(2)令y=﹣x2﹣2x+3=0,解得x=﹣3或x=1,∴点A(﹣3,0),B(1,0),作PD⊥x轴于点D,∵点P在y=﹣x2﹣2x+3上,∴设点P(x,﹣x2﹣2x+3)①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD即y=﹣x2﹣2x+3=2,解得x=﹣1(舍去)或x=﹣﹣1,∴点P(﹣﹣1,2);②∵S四边形BCPA=S△OBC+S△OAC=2+S△APC∵S△AOC=4.5,S△OCP=x,S△OAP=|yP|=﹣x2﹣3x+∴S△APC=S△OAP+S△OCP﹣S△AOC=x+(﹣x2﹣3x+4.5)﹣4.5=﹣x2﹣x=﹣(x﹣)2+,∴当x=﹣0.5时,S△ACP最大值=,此时M(﹣0.5,﹣),S四边形PABC最大=. 7.解:(1)将A(﹣1,0)、B(3,0)代入抛物线y=ax2+bx+3(a≠0),,解得:a=﹣1,b=2.故抛物线解析式为:y=﹣x2+2x+3.(2)存在将点D代入抛物线解析式得:m=3,∴D(2,3),令x=0,y=3,∴C(0,3),∴OC=OB,∴∠OCB=∠CBO=45°,如图,设BP交y轴于点G, ∵CD∥x轴,∴∠DCB=∠BCO=45°,在△CDB和△CGB中:∵∠∴△CDB≌△CGB(ASA),∴CG=CD=2,∴OG=1,∴点G(0,1),设直线BP:y=kx+1,代入点B(3,0),∴k=﹣,∴直线BP:y=﹣x+1,联立直线BP和二次函数解析式:,解得:或(舍),∴P(﹣,).(3)直线BC:y=﹣x+3,直线BD:y=﹣3x+9,当0≤t≤2时,如下图:设直线C′B′:y=﹣(x﹣t)+3联立直线BD求得F(3﹣t,t),S=S△BCD﹣S△CC′E﹣S△C′DF=×2×3﹣×t×t﹣×(2﹣t)(3﹣t)整理得:S=﹣t2+3t(0≤t≤2).当2<t≤3时,如图:H(t,﹣3t+9),I(t,﹣t+3)S=S△HIB= [(﹣3t+9)﹣(﹣t+3)]×(3﹣t)整理得:S=t2﹣6t+9(2<t≤3)综上所述:S=. 8.解:(1)∵两个函数是关于原点O的“伴随函数”,∴两个函数的点分别关于原点中心对称,设函数y=x+1上的任一点为(x,y),则它的对称点为(﹣x,﹣y),将(﹣x,﹣y)代入函数y=x+1得:﹣y=﹣x+1,∴y=x﹣1.函数y=x+1关于原点O的“伴随函数”的函数解析式为y=x﹣1;同理可得,函数y=(x﹣2)2+1关于原点O的“伴随函数”的函数解析式为y=﹣(x+2)2﹣1,故答案为:y=x﹣1;y=﹣(x+2)2﹣1;(2)如图,当m<x<7时,函数y=x2﹣2x与函数G的函数值y都随自变量x的增大而增大,∵“伴随函数”的开口方向向下,∴在对称轴的左侧y随自变量x的增大而增大,∴m<7,同时“伴随函数”的对称轴应与直线x=7重合或在直线x=7的左侧,∴m≥,∴m≥4,综上,函数y=x2﹣2x与函数G的函数值y都随自变量x的增大而增大,m的取值范围为4≤m<7;(3)a的取值范围为a=或a=或a>.理由:①当“伴随函数”的顶点在AB上时,如图,∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴二次函数y=ax2﹣2ax﹣3a的对称轴为直线x=1,∵点C(2,0)为对称中心,∴函数N的对称轴为直线x=3,∴函数N的顶点坐标为(3,1),∵(3,1)关于点C(2,0)对称的点为(1,﹣1),∴将(1,﹣1)代入y=ax2﹣2ax﹣3a得:a﹣2a﹣3a=﹣1,∴a=;②当两个函数的交点在AB上时,如图,二次函数y=ax2﹣2ax﹣3a与x轴的交点为(﹣1,0)和(3,0),∵点C(2,0)为对称中心,∴函数N与x轴的交点为(5,0)和(1,0),∴函数N的解析式为y=﹣ax2+6ax﹣5a,当y=1时,,解得:a=;③当“伴随函数”经过点B时,如图,∵点B(4,1),∴1=﹣a×16+6a×4﹣5a,解得:a=.综上,图形W与线段AB恰有2个公共点,a的取值范围为a=或a=或a>.
相关试卷
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习十五(含答案),共14页。
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习十二(含答案),共15页。
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习十三(含答案),共15页。