河南省新乡市河南师范大学附属中学2022-2023学年九年级下学期期中数学试题
展开河南省新乡市河南师范大学附属中学2022-2023学年九年级下学期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”意思是今有两数其意义相反,则分别叫做正数与负数.如果向北走两步记作+2步,那么向南走5步记作( )
A.+5步 B.﹣5步 C.﹣3步 D.﹣2步
2.如图,AB//CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是( )
A.70° B.60° C.55° D.50°
3.实数在数轴上的对应点的位置如图所示,下列结论中正确的是( )
A. B. C. D.
4.若分式的值等于0,则x的值为( )
A.﹣1 B.0 C.1 D.±1
5.下列计算正确的是( )
A.a2•a4=a8 B.(-2a2)3=-6a6 C.a4÷a=a3 D.2a+3a=5a2
6.某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该活动开始后、实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x棵.则下列方程正确的是( )
A. B. C. D.
7.一元二次方程的根的情况是( )
A.有两个不相等的实数根 B.没有实数根
C.有两个相等的实数根 D.只有一个实数根
8.在平面直角坐标系中,一次函数的图象与轴的交点的坐标为( )
A. B. C. D.
9.如图,矩形的对角线交于点O,已知则下列结论错误的是( )
A. B.
C. D.
10.下列命题,其中是真命题的是( )
A.对角线互相垂直的四边形是平行四边形 B.有一个角是直角的四边形是矩形
C.对角线互相平分的四边形是菱形 D.对角线互相垂直的矩形是正方形
11.一次函数与反比例函数在同一坐标系中的图象可能是( )
A. B. C. D.
二、填空题
12.在“生命安全”主题教育活动中,901班开展了生命安全知识有奖竞答活动,以下公布的是某5位同学的竞答成绩(分):90,78,82,85,90,这组数据的中位数是___________.
13.分解因式:_________.
14.如图,四边形为平行四边形,则点B的坐标为________.
15.如图,在正方形中,,、、、分别为、、、的中点,则图中阴影部分图形的周长之和为______.
三、解答题
16.解不等式组:,并在数轴上表示不等式组的解集.
17.解方程:
18.天水市某中学为了解学校艺术社团活动的开展情况,在全校范围内随机抽取了部分学生,在“舞蹈、乐器、声乐、戏曲、其它活动”项目中,围绕你最喜欢哪一项活动(每人只限一项)进行了问卷调查,并将调查结果绘制成如下两幅不完整的统计图.
请你根据统计图解答下列问题:
(1)在这次调查中,一共抽查了 名学生.
(2)请你补全条形统计图.
(3)扇形统计图中喜欢“乐器”部分扇形的圆心角为 度.
(4)请根据样本数据,估计该校1200名学生中喜欢“舞蹈”项目的共多少名学生?
19.如图,在中,以A点为圆心,的长为半径画弧交于D点,分别以B,D点为圆心,大于的长为半径画弧,两弧交于E点,作射线,交于点F,连接.
(1)求证:;
(2)若,求的度数.
20.如图,已知一次函数y1=kx+b的图像与函数y2=(x>0)的图像交于A(6,-),B(,n)两点,与y轴交于点C,将直线AB沿y轴向上平移t个单位长度得到直线DE,DE与y轴交于点F.
(1)求y1与y2的解析式;
(2)观察图像,直接写出y1<y2时x的取值范围;
(3)连接AD,CD,若△ACD的面积为6,则t的值为 .
21.如图,是的外接圆,是的直径,于点E.
(1)求证:;
(2)连接并延长,交于点F,交于点G,连接.若的半径为5,,求和的长.
22.某市总预算亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.
2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3: 2.
(1)这三年用于辅助配套的投资将达到多少亿元?
(2)市政府2015年年初对三项工程的总投资是多少亿元?
(3)求搬迁安置投资逐年递减的百分数.
23.(1)如图1,在△ABC中,,CD平分,交AB于点D,//,交BC于点E.
①若,,求BC的长;
②试探究是否为定值.如果是,请求出这个定值;如果不是,请说明理由.
(2)如图2,和是△ABC的2个外角,,CD平分,交AB的延长线于点D,//,交CB的延长线于点E.记△ACD的面积为,△CDE的面积为,△BDE的面积为.若,求的值.
24.如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.
(1)求此抛物线对应的函数表达式;
(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点,在x轴上,MN与矩形的一边平行且相等.栅栏总长l为图中粗线段,,,MN长度之和.请解决以下问题:
(ⅰ)修建一个“”型栅栏,如图2,点,在抛物线AED上.设点的横坐标为,求栅栏总长l与m之间的函数表达式和l的最大值;
(ⅱ)现修建一个总长为18的栅栏,有如图3所示的修建“”型或“”型栅型两种设计方案,请你从中选择一种,求出该方案下矩形面积的最大值,及取最大值时点的横坐标的取值范围(在右侧).
参考答案:
1.B
【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.
【详解】解:∵向北走2步记作+2步,
∴向南走5步记作﹣5步.
故选B.
【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
2.A
【详解】∵AB//CD,∠1=40°,∠2=30°,
∴∠C=40°.
∵∠3是△CDE的外角,
∴∠3=∠C+∠2=40°+30°=70°.
故选:A.
3.B
【分析】由数轴及题意可得,依此可排除选项.
【详解】解:由数轴及题意可得:,
∴,
∴只有B选项正确,
故选B.
【点睛】本题主要考查实数的运算及数轴,熟练掌握实数的运算及数轴是解题的关键.
4.A
【分析】根据分式的值为0的条件即可得出答案.
【详解】解:根据题意,−1=0,x−1≠0,
∴x=−1,
故选:A.
【点睛】本题考查了分式的值为0的条件,掌握分式的值为0的条件:分子等于0且分母不等于0是解题的关键.
5.C
【分析】根据同底数幂的乘法、积的乘方、同底数幂的除法、合并同类项逐个选项判断即可.
【详解】A、a2•a4=a6,故A错误;
B、(-2a2)3=-8a6,故B错误;
C、a4÷a=a3,故C正确;
D、2a+3a=5a,故D错误,
故选:C.
【点睛】本题考查了同底数幂的乘法、积的乘方、同底数幂的除法、合并同类项,熟记法则并根据法则计算是解题关键.
6.B
【分析】设实际平均每天植树x棵,则原计划每天植树(x-50)棵,根据:实际植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.
【详解】解:设现在平均每天植树x棵,则原计划每天植树(x-50)棵,
根据题意,可列方程:,
故选:B.
【点睛】此题考查了由实际问题列分式方程,关键在寻找相等关系,列出方程.
7.A
【分析】计算一元二次方程根的判别式进而即可求解.
【详解】解:
一元二次方程的根的情况是有两个不相等的实数根,
故选:A.
【点睛】本题考查了一元二次方程 (为常数)的根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.
8.D
【分析】令x=0,求出函数值,即可求解.
【详解】解:令x=0, ,
∴一次函数的图象与轴的交点的坐标为.
故选:D
【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
9.C
【分析】根据矩形的性质得出∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,AB=DC,再解直角三角形判定各项即可.
【详解】选项A,∵四边形ABCD是矩形,
∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,
∴AO=OB=CO=DO,
∴∠DBC=∠ACB,
∴由三角形内角和定理得:∠BAC=∠BDC=∠α,
选项A正确;
选项B,在Rt△ABC中,tanα=,
即BC=m•tanα,
选项B正确;
选项C,在Rt△ABC中,AC=,即AO=,
选项C错误;
选项D,∵四边形ABCD是矩形,
∴DC=AB=m,
∵∠BAC=∠BDC=α,
∴在Rt△DCB中,BD=,
选项D正确.
故选C.
【点睛】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键.
10.D
【分析】分别根据平行四边形,矩形,菱形及正方形的判定定理进行判断即可.
【详解】对角线互相平分的四边形是平行四边形,故A错误,不符合题意;
有三个角是直角的四边形是矩形,故B错误,不符合题意;
对角线互相垂直平分的四边形是菱形,故C错误,不符合题意;
对角线互相垂直的矩形是正方形,故D正确,符合题意;
故选:D.
【点睛】本题考查了平行四边形,矩形,菱形及正方形的判定定理,熟练掌握知识点是解题的关键.
11.D
【分析】分别利用k的取值,进而分析一次函数与反比例函数图象的位置,进而得出答案.
【详解】解:当时,一次函数的图象经过第一、三、四象限,反比例函数图象在第一、三象限,
当时,一次函数的图象经过第二、三、四象限,反比例函数图象在第二、四象限,
四个选项中只有D符合,
故选:D.
【点睛】此题主要考查了一次函数与反比例函数的图象,关键是熟练掌握两个函数图象的性质.
12.85
【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】解:某5位同学的竞答成绩从小到大排列为:78,82,85,90,90,
则排在中间的数是85.
故答案为:85.
【点睛】本题考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
13.
【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,直接提取公因式x再应用完全平方公式继续分解即可.
【详解】解:
故答案为: .
【点睛】本题主要考查了因式分解.能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.
14.
【分析】根据平行四边形的性质以及点的平移即可得出结论.
【详解】解:四边形为平行四边形,
,即将点平移到的过程与将点平移到的过程保持一致,
将点平移到的过程是:(向左平移4各单位长度);(上下无平移);
将点平移到的过程按照上述一致过程进行得到,即,
故答案为:.
【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.
15.
【分析】设与交于点,由图形可知,阴影部分图形为四个形状完全相同的图形组成的,其中一个图形的周长为,分别求得、劣弧即可.
【详解】解:设与交于点,如下图:
由图形可知,阴影部分图形为四个形状完全相同的图形组成的,其中一个图形的周长为
由题意可知,劣弧
阴影部分图形的周长为
所以答案为
【点睛】此题考查了求解不规则图形的周长,涉及了弧长公式,熟练掌握弧长公式是求解问题的关键.
16.,在数轴上表示不等式组的解集见解析
【分析】先求出每个不等式的解集,然后求出不等式组的解集,然后在数轴上表示其解集即可.
【详解】解:,
解不等式,得,
解不等式,得,
∴不等式组的解集为:,
将解集在数轴上表示如解图:
.
【点睛】本题主要考查了解一元一次不等式组,并在数轴上表示不等式的解集,解题的关键在于能够熟练掌握相关知识进行求解.
17.无解
【分析】方程的两边同时乘,转化为整式方程,求整式方程的解,最后检验整式方程的解即可.
【详解】解:两边同时乘以得:
化简得,解得
检验:将代入得
所以是原方程的增根,即原方程无解.
【点睛】此题考查了解分式方程,熟练掌握分式方程的求解方法是解题的关键.
18.(1)50人;(2)见解析;(3)115.2;(4)288.
【分析】(1)用喜欢声乐的人数除以它所占的百分比得到调查的总人数;
(2)先计算出喜欢戏曲的人数,然后补全条形统计图;
(3)用360度乘以喜欢乐器的人数所占得到百分比得到扇形统计图中喜欢“乐器”部分扇形的圆心角的度数;
(4)用1200乘以样本中喜欢舞蹈的人数所占的百分比即可.
【详解】(1),
所以在这次调查中,一共抽查了50名学生;
(2)喜欢戏曲的人数为(人),
条形统计图为:
(3)扇形统计图中喜欢“乐器”部分扇形的圆心角的度数为;
故答案为50;115.2;
(4),
所以估计该校1200名学生中喜欢“舞蹈”项目的共288名学生.
【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图.
19.(1)见解析
(2).
【分析】(1)由作图知是的平分线,,利用即可证明;
(2)由全等三角形的性质求得,再利用三角形的外角性质即可求解.
【详解】(1)证明:由作图知是的平分线,,
∴,
又,
∴;
(2)解:∵,
∴,
∵,
∴.
【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定与性质和三角形的外角性质.
20.(1),;
(2);
(3)2.
【分析】(1)将两函数A、B的坐标值分别代入两个函数解析式求出未知系数即可;
(2)由图像可知当x在A、B两点之间时y1
【详解】(1)∵一次函数y1=kx+b的图像与函数y2=(x>0)的图像交于A(6,-),B(,n)两点,
∴, ,
解得:, ,
∴y1、y2的解析式为:,;
(2)从图像上可以看出,当x在AB两点之间时,y1
(3)
作CG⊥DE于G,如图,
∵直线DE是直线AB沿y轴向上平移t个单位长度得到,
∴,CF=t,
∵直线AB的解析式为,
∴直线AB与y轴的交点为C,与x轴的交点为,
即直线AB与x、y坐标轴的交点到原点O的距离相等,
∴∠FCA=45°,
∵CG⊥DE, ,
∴CG⊥AC,CG等于平行线AB、DE之间的距离,
∴∠GCF=∠GFC=45°,
∴CG==,
∵A、C两点坐标为:A(6,-),C,
∴线段AC=,
∴,
∵△ACD的面积为6,
∴3t=6,
解得:t=2.
【点睛】本题综合考查了一次函数、反比例函数,熟练掌握通过已知函数图像上的点的坐标求函数解析式,通过图像查看自变量取值范围,灵活运用平移的性质是解题关键.
21.(1)见解析
(2),.
【分析】(1)根据垂径定理得到,根据圆周角定理证明结论;
(2)根据勾股定理求出,根据垂径定理求出,根据圆周角定理得到,根据勾股定理求出,证明,根据相似三角形的性质求出.
【详解】(1)证明:∵是的直径,,
∴,,
∴;
(2)解:在中,,
∴,
∵是的直径,,
∴,
∵是的直径,
∴,
∴,
∵,,
∴,
∴,
∴,即,
解得:.
【点睛】本题考查的是圆周角定理、垂径定理、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、垂径定理是解题的关键.
22.(1)36;(2)35亿元;(3)50%
【分析】(1)由线路敷设三年总投资为54亿元及这三年的线路敷设、辅助配套工程的总投资资金之比达到3:2,可得答案.
(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,根据“线路敷设三年总投资为54亿元、辅助配套三年的总投资为36亿元”列方程组,解之求得x、b的值可得答案.
(3)由x=5得出2015年初搬迁安置的投资为20亿元,设从2016年初开始,搬迁安置投资逐年递减的百分数为y,根据“2017年年初搬迁安置的为投资5亿”列方程求解可得.
【详解】解:(1)三年用于辅助配套的投资将达到54×=36(亿元);
(2)设2015年年初,对辅助配套的投资为x亿元,则线路敷设的投资为2x亿元,搬迁安置的投资是4x亿元,
根据题意,得:,
解得:,
∴市政府2015年年初对三项工程的总投资是7x=35亿元;
(3)由x=5得,2015年初搬迁安置的投资为20亿元,
设从2016年初开始,搬迁安置投资逐年递减的百分数为y,
由题意,得:20(1﹣y)2=5,
解得:y1=0.5,y2=1.5(舍)
答:搬迁安置投资逐年递减的百分数为50%.
【点睛】本题考查一元二次方程的应用,分式方程的应用,找准等量关系,列出方程是关键.
23.(1)①;②是定值,定值为1;(2)
【分析】(1)①证明,根据相似三角形的性质求解即可;
②由,可得,由①同理可得,计算;
(2)根据平行线的性质、相似三角形的性质可得,又,则,可得,设,则.证明,可得,过点D作于H.分别求得,进而根据余弦的定义即可求解.
【详解】(1)①∵CD平分,
∴.
∵,
∴.
∴.
∵,
∴.
∴.
∴.
∴.
∴.
∴.
②∵,
∴.
由①可得,
∴.
∴.
∴是定值,定值为1.
(2)∵,
∴.
∵,
∴.
又∵,
∴.
设,则.
∵CD平分,
∴.
∵,
∴.
∴.
∵,
∴.
∴.
∴.
∵,
∴.
∴.
∴.
∴.
如图,过点D作于H.
∵,
∴.
∴.
【点睛】本题考查了相似三角形的性质与判定,求余弦,掌握相似三角形的性质与判定是解题的关键.
24.(1)y=x2+8
(2)(ⅰ)l=m2+2m+24,l的最大值为26;(ⅱ)方案一:最大面积27,+9≤P1横坐标≤;方案二:最大面积+≤P1横坐标≤
【分析】(1)通过分析A点坐标,利用待定系数法求函数解析式;
(2)(ⅰ)结合矩形性质分析得出P2的坐标为(m,-m2+8),然后列出函数关系式,利用二次函数的性质分析最值;
(ⅱ)设P2P1=n,分别表示出方案一和方案二的矩形面积,利用二次函数的性质分析最值,从而利用数形结合思想确定取值范围.
【详解】(1)由题意可得:A(-6,2),D(6,2),
又∵E(0,8)是抛物线的顶点,
设抛物线对应的函数表达式为y=ax2+8,将A(-6,2)代入,
(-6)2a+8=2,
解得:a=,
∴抛物线对应的函数表达式为y=x2+8;
(2)(ⅰ)∵点P1的横坐标为m(0<m≤6),且四边形P1P2P3P4为矩形,点P2,P3在抛物线AED上,
∴P2的坐标为(m,m2+8),
∴P1P2=P3P4=MN=m2+8,P2P3=2m,
∴l=3(m2+8)+2m=m2+2m+24=(m-2)2+26,
∵<0,
∴当m=2时,l有最大值为26,
即栅栏总长l与m之间的函数表达式为l=m2+2m+24,l的最大值为26;
(ⅱ)方案一:设P2P1=n,则P2P3=18-3n,
∴矩形P1P2P3P4面积为(18-3n)n=-3n2+18n=-3(n-3)2+27,
∵-3<0,
∴当n=3时,矩形面积有最大值为27,
此时P2P1=3,P2P3=9,
令x2+8=3,
解得:x=,
∴此时P1的横坐标的取值范围为+9≤P1横坐标≤,
方案二:设P2P1=n,则P2P3=9-n,
∴矩形P1P2P3P4面积为(9-n)n=-n2+9n=-(n-)2+,
∵-1<0,
∴当n=时,矩形面积有最大值为,
此时P2P1=,P2P3=,
令x2+8=,
解得:x=,
∴此时P1的横坐标的取值范围为+≤P1横坐标≤.
【点睛】本题考查二次函数的应用,掌握待定系数法求函数解析式,准确识图,确定关键点的坐标,利用数形结合思想解题是关键.
河南省新乡市牧野区河南师范大学附属中学2023-2024学年九年级上学期期末数学试题: 这是一份河南省新乡市牧野区河南师范大学附属中学2023-2024学年九年级上学期期末数学试题,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河南省新乡市牧野区河南师范大学附属中学2023-2024学年上学期10月月考九年级数学试题: 这是一份河南省新乡市牧野区河南师范大学附属中学2023-2024学年上学期10月月考九年级数学试题,共8页。试卷主要包含了下列函数中是二次函数的是,如果抛物线经过点A,用适当的方法解方程等内容,欢迎下载使用。
河南省新乡市牧野区河南师范大学附属中学2023-—2024学年上学期10月月考九年级数学试题(月考): 这是一份河南省新乡市牧野区河南师范大学附属中学2023-—2024学年上学期10月月考九年级数学试题(月考),共8页。试卷主要包含了下列函数中是二次函数的是,如果抛物线经过点A,用适当的方法解方程等内容,欢迎下载使用。