终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    山东省德州市临邑县2023届九年级下学期开学考试数学试卷(含解析)

    立即下载
    加入资料篮
    山东省德州市临邑县2023届九年级下学期开学考试数学试卷(含解析)第1页
    山东省德州市临邑县2023届九年级下学期开学考试数学试卷(含解析)第2页
    山东省德州市临邑县2023届九年级下学期开学考试数学试卷(含解析)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省德州市临邑县2023届九年级下学期开学考试数学试卷(含解析)

    展开

    这是一份山东省德州市临邑县2023届九年级下学期开学考试数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    山东省德州市临邑县2022-2023学年第二学期九年级
    数学开学考试测试卷
    一、选择题(共48分)
    1.下列图形中,是中心对称图形但不是轴对称图形的是(  )
    A. B. C. D.
    2.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是(  )
    A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,69
    3.如图,是一个几何体的三视图,则这个几何体是(  )

    A.B.C.D.
    4.如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为(  )

    A.4 B.4 C. D.2
    5.如图,点A、B位于图中所示的双曲线上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为(  )

    A.4 B.6 C.8 D.12
    6.如图.随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡L1、L2同时发光的概率为(  )

    A. B. C. D.
    7.函数和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是(  )
    A.B.C.D.
    8.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点M,连接OC,DB.如果OC∥DB,OC=2,那么图中阴影部分的面积是(  )

    A.π B.2π C.3π D.4π
    9.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处,若AB=3,BC=5,则tan∠EFC的值(  )

    A. B. C. D.

    10.如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC的边AB的长度为(  )

    A.12 B.8 C.10 D.13
    11.如图,在△ABC中,D,E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点,若AC=6,则DH=(  )

    A.1 B.2 C.1.5 D.3
    12.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为(  )

    A.3 B.4 C.5 D.6


    二、填空题(共24分)
    13.如图,在⊙O中,四边形OABC为菱形,点D在上,则∠ADC的度数是   .

    14.若一个圆锥的底面半径是2cm,母线长是6cm,则该圆锥侧面展开图的圆心角是   度.
    15.如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为   .

    16.若关于x的一元二次方程(k﹣1)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围是   .
    17.如图,在Rt△AOB中,OB=2,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为   .

    18.如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=﹣,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,…,依次进行下去,记点An的横坐标为an,若a1=2,则a2020=   .

    三、解答题(共78分)
    19.(1)解方程:x2﹣4x﹣8=0;
    (2)解不等式:.
    20.为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为:A“剪纸”、B“沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图两幅不完整的统计图.

    根据以上信息,回答下列问题:
    (1)本次调查的样本容量为    ;统计图中的a=   ,b=   ;
    (2)通过计算补全条形统计图;
    (3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.


    21.如图,已知反比例函数y=的图象与直线y=ax+b相交于点A(﹣2,3),B(1,m).
    (1)求出直线y=ax+b的表达式;
    (2)在x轴上有一点P使得△PAB的面积为18,求出点P的坐标.

    22.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.
    (1)当售价为55元/千克时,每月销售水果多少千克?
    (2)当月利润为8750元时,每千克水果售价为多少元?
    (3)当每千克水果售价为多少元时,获得的月利润最大?
    23.如图,在△ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.
    (1)试证明DE是⊙O的切线;
    (2)若⊙O的半径为5,AC=6,求此时DE的长.

    24.如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.
    (1)观察猜想.
    图1中,线段NM、NP的数量关系是   ,∠MNP的大小为   .
    (2)探究证明
    把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;
    (3)拓展延伸
    把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.

    25.若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).
    (1)求二次函数的表达式;
    (2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;
    (3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.
    ①当m=时,求点P的坐标;
    ②求m的最大值.


    参考答案
    一、选择题(共48分)
    1.解:A.该图形既不是是中心对称图形,也不是轴对称图形,故此选项不符合题意;
    B.该图形是中心对称图形,不是轴对称图形,故此选项符合题意;
    C.该图形既是中心对称图形,也是轴对称图形,故此选项不符合题意;
    D.该图形不是中心对称图形,是轴对称图形,故此选项不符合题意;
    故选:B.
    2.解:∵x2﹣8x﹣5=0,
    ∴x2﹣8x=5,
    则x2﹣8x+16=5+16,即(x﹣4)2=21,
    ∴a=﹣4,b=21,
    故选:A.
    3.解:结合三个视图发现,这个几何体是长方体和圆锥的组合图形.
    故选:B.
    4.解:连接CD,
    ∵AB=BC,∠BAC=30°,
    ∴∠ACB=∠BAC=30°,
    ∴∠B=180°﹣30°﹣30°=120°,
    ∴∠D=180°﹣∠B=60°,
    ∵AD是直径,
    ∴∠ACD=90°,
    ∵∠CAD=30°,AD=8,
    ∴CD=AD=4,
    ∴AC===4,
    故选:B.

    5.解:延长BA交y轴于E,则BE⊥y轴,如图:

    ∵点A在双曲线y=上,
    ∴四边形AEOD的面积为4,
    ∵点B在双曲线y=上,且AB∥x轴,
    ∴四边形BEOC的面积为12,
    ∴矩形ABCD的面积为12﹣4=8.
    故选:C.
    6.解:画树状图,如图所示:

    随机闭合开关K1、K2、K3中的两个有六种情况:闭合K1K2,闭合K1K3,闭合K2K1,闭合K2K3,闭合K3K1,闭合K3K2,
    能让两盏灯泡L1、L2同时发光的有两种情况:闭合K2K3,闭合K3K2,
    则P(能让两盏灯泡L1、L2同时发光)==.
    故选:D.
    7.解:在函数(k≠0)和y=﹣kx+2(k≠0)中,
    当k>0时,函数(k≠0)的图象位于第一、三象限,函数y=﹣kx+2的图象位于第一、二、四象限,故选项A、B错误,选项D正确,
    当k<0时,函数(k≠0)的图象位于第二、四象限,函数y=﹣kx+2的图象位于第一、二、三象限,故选项C错误,
    故选:D.
    8.解:连接OD,BC,
    ∵CD⊥AB,OC=OD,
    ∴DM=CM,∠COB=∠BOD,
    ∵OC∥BD,
    ∴∠COB=∠OBD,
    ∴∠BOD=∠OBD,
    ∴OD=DB,
    ∴△BOD是等边三角形,
    ∴∠BOD=60°,
    ∴∠BOC=60°,
    ∵DM=CM,
    ∴S△OBC=S△OBD,
    ∵OC∥DB,
    ∴S△OBD=S△CBD,
    ∴S△OBC=S△DBC,
    ∴图中阴影部分的面积=扇形COB的面积==2π,
    故选:B.

    9.解:∵四边形ABCD为矩形,
    ∴AD=BC=5,AB=CD=3,
    ∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,
    ∴AF=AD=5,EF=DE,
    在Rt△ABF中,BF=,
    ∴CF=BC﹣BF=5﹣4=1,
    设CE=x,则DE=EF=3﹣x
    在Rt△ECF中,∵CE2+FC2=EF2,
    ∴x2+12=(3﹣x)2,解得x=,
    ∴tan∠FEC=,
    故选:C.
    10.解:根据图2中的曲线可知:
    当点P在△ABC的顶点A处,运动到点B处时,
    图1中的AC=BC=13,
    当点P运动到AB中点时,
    此时CP⊥AB,
    根据图2点Q为曲线部分的最低点,
    得CP=12,
    所以根据勾股定理,得
    此时AP==5.
    所以AB=2AP=10.
    故选:C.
    11.解:∵D、E为边AB的三等分点,EF∥DG∥AC
    ∴BE=DE=AD,BF=GF=CG,AH=HF,
    ∴AB=3BE,DH是△AEF的中位线,
    ∴DH=EF,
    ∵EF∥AC,
    ∴△BEF∽△BAC,
    ∴=,即 =,
    解得:EF=2,
    ∴DH=EF=×2=1,
    故选:A.
    12.解:①由图象可知:a>0,c<0,
    ∵﹣=1,
    ∴b=﹣2a<0,
    ∴abc>0,故①错误;
    ②∵抛物线与x轴有两个交点,
    ∴b2﹣4ac>0,
    ∴b2>4ac,故②正确;
    ③当x=2时,y=4a+2b+c<0,故③错误;
    ④当x=﹣1时,y=a﹣b+c=a﹣(﹣2a)+c>0,
    ∴3a+c>0,故④正确;
    ⑤当x=1时,y取到值最小,此时,y=a+b+c,
    而当x=m时,y=am2+bm+c,
    所以a+b+c≤am2+bm+c,
    故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,
    ⑥当x<﹣1时,y随x的增大而减小,故⑥错误,
    故选:A.
    二、填空题(共24分)
    13.解:∵四边形ABCD内接于⊙O,
    ∴∠B+∠D=180°,
    ∵四边形OABC为菱形,
    ∴∠B=∠AOC,
    ∴∠D+∠AOC=180°,
    ∵∠AOC=2∠D,
    ∴3∠D=180°,
    ∴∠ADC=60°,
    故答案为60°.
    14.解:圆锥侧面展开图的弧长是:2π×2=4π(cm),
    设圆心角的度数是n度.则=4π,
    解得:n=120.
    故答案为:120.
    15.解:平面直角坐标系如图所示,旋转中心是P点,P(4,2).

    故答案为:(4,2).
    16.解:∵原方程是关于x得一元二次方程,
    ∴k﹣1≠0
    解得:k≠1,
    又∵原方程有两个不相等的实数根,
    ∴Δ=4+4(k﹣1)>0,
    解得:k>0,
    即k得取值范围是:k>0且k≠1,
    故答案为:k>0且k≠1.
    17.解:连接OP、OQ,作OP′⊥AB于P′,
    ∵PQ是⊙O的切线,
    ∴OQ⊥PQ,
    ∴PQ==,
    当OP最小时,线段PQ的长度最小,
    当OP⊥AB时,OP最小,
    在Rt△AOB中,∠A=30°,
    ∴OA==6,
    在Rt△AOP′中,∠A=30°,
    ∴OP′=OA=3,
    ∴线段PQ长度的最小值==2,
    故答案为:2.

    18.解:当a1=2时,B1的横坐标与A1的横坐标相等为a1=2,
    A2的纵坐标和B1的纵坐标相同为y2=﹣=﹣,
    B2的横坐标和A2的横坐标相同为a2=﹣,
    A3的纵坐标和B2的纵坐标相同为y3=﹣=,
    B3的横坐标和A3的横坐标相同为a3=﹣,
    A4的纵坐标和B3的纵坐标相同为y4=﹣=3,
    B4的横坐标和A4的横坐标相同为a4=2=a1,

    由上可知,a1,a2,a3,a4,a5,…,3个为一组依次循环,
    ∵2020÷3=673…1,
    ∴a2020=a1=2,
    故答案为:2.

    三、解答题(共78分)
    19.解:(1)x2﹣4x﹣8=0,
    x2﹣4x=8,
    x2﹣4x+4=12,
    (x﹣2)2=12,
    x﹣2=±2,
    所以x1=2+2,x2=2﹣2;
    (2)去分母得4(x+1)﹣12<3(x﹣1),
    去括号得4x+4﹣12<3x﹣3,
    移项得4x﹣3x<﹣3﹣4+12,
    合并得x<5.
    20.解:(1)18÷15%=120(人),因此样本容量为120;
    a=120×10%=12(人),b=120×30%=36(人),
    故答案为:120,12,36;
    (2)E组频数:120﹣18﹣12﹣30﹣36=24(人),
    补全条形统计图如图所示:

    (3)2500×=625(人),
    答:估计该校2500名学生中喜爱“葫芦雕刻”的有625人.
    21.解:(1)将点A的坐标代入反比例函数表达式并解得:k=﹣2×3=﹣6,
    故反比例函数表达式为:y=﹣,
    将点B的坐标代入上式并解得:m=﹣6,故点B(1,﹣6),
    将点A、B的坐标代入一次函数表达式得,解得,
    故直线的表达式为:y=﹣3x﹣3;

    (2)连接AP、BP,
    设直线与x轴的交点为E,当y=0时,x=﹣1,故点E(﹣1,0),
    分别过点A、B作x轴的垂线AC、BD,垂足分别为C、D,

    则S△PAB=PE•CA+PE•BD=PEPE=PE=18,解得:PE=4,
    故点P的坐标为(3,0)或(﹣5,0).
    22.解:(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;
    (2)设每千克水果售价为x元,
    由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],
    解得:x1=65,x2=75,
    答:每千克水果售价为65元或75元;
    (3)设每千克水果售价为m元,获得的月利润为y元,
    由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,
    ∴当m=70时,y有最大值为9000元,
    答:当每千克水果售价为70元时,获得的月利润最大值为9000元.
    23.(1)证明:连接OD、BD,
    ∵AB是⊙O直径,
    ∴∠ADB=90°,
    ∴BD⊥AC,
    ∵AB=BC,
    ∴D为AC中点,
    ∵OA=OB,
    ∴OD∥BC,
    ∵DE⊥BC,
    ∴DE⊥OD,
    ∵OD为半径,
    ∴DE是⊙O的切线;
    (2)由(1)知BD是AC的中线,
    ∴AD=CD==3,
    ∵⊙O的半径为5,
    ∴AB=10,
    ∴BD===,
    ∵AB=BC,
    ∴∠A=∠C,
    ∵∠ADB=∠CED=90°,
    ∴△CDE∽△ABD,
    ∴,即=,
    ∴DE=3.

    24.解:(1)∵AB=AC,AD=AE,
    ∴BD=CE,
    ∵点M、N、P分别为DE、BE、BC的中点,
    ∴MN=BD,PN=CE,MN∥AB,PN∥AC,
    ∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,
    ∴∠MNE+∠ENP=∠ABE+∠AEB,
    ∵∠ABE+∠AEB=180°﹣∠BAE=60°,
    ∴∠MNP=60°,
    故答案为:NM=NP;60°;
    (2)△MNP是等边三角形.
    理由 如下:由旋转可得,∠BAD=∠CAE,
    又∵AB=AC,AD=AE,
    ∴△ABD≌△ACE(SAS),
    ∴BD=CE,∠ABD=∠ACE,
    ∵点M、N、P分别为DE、BE、BC的中点.
    ∴MN=BD,PN=CE,MN∥BD,PN∥CE,
    ∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,
    ∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,
    ∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,
    ∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,
    ∴△MNP是等边三角形;
    (3)根据题意得,BD≤AB+AD,即BD≤4,
    ∴MN≤2,
    ∴△MNP的面积==,
    ∴△MNP的面积的最大值为.
    25.解:(1)一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(﹣1,0)、(0,﹣3),
    将点A、B、C的坐标代入抛物线表达式得,解得,
    故抛物线的表达式为:y=x2﹣2x﹣3;
    (2)设直线BE交y轴于点M,

    从抛物线表达式知,抛物线的对称轴为x=1,
    ∵CD∥x轴交抛物线于点D,故点D(2,﹣3),
    由点B、C的坐标知,直线BC与AB的夹角为45°,即∠MCB=∠DCB=45°,
    ∵BC恰好平分∠DBE,故∠MBC=∠DBC,
    而BC=BC,
    故△BCD≌△BCM(ASA),
    ∴CM=CD=2,故OM=3﹣2=1,故点M(0,﹣1),
    设直线BE的表达式为:y=kx+b,则,解得,
    故直线BE的表达式为:y=x﹣1;
    (3)过点P作PN∥x轴交BC于点N,

    则△PFN∽△AFB,则,
    而S△BFP=mS△BAF,则=,解得:m=PN,
    ①当m=时,则PN=2,
    设点P(t,t2﹣2t﹣3),
    由点B、C的坐标知,直线BC的表达式为:y=x﹣3,当x=t﹣2时,y=t﹣5,故点N(t﹣2,t﹣5),
    故t﹣5=t2﹣2t﹣3,
    解得:t=1或2,故点P(2,﹣3)或(1,﹣4);
    ②m=PN=[t﹣(t2﹣2t)]=﹣(t﹣)2+,
    ∵<0,故m的最大值为.

    相关试卷

    2023-2024学年山东省德州市临邑县万力学校八年级(上)开学数学试卷(含解析):

    这是一份2023-2024学年山东省德州市临邑县万力学校八年级(上)开学数学试卷(含解析),共23页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    2022-2023学年山东省德州市临邑县八年级(下)期末数学试卷(含解析):

    这是一份2022-2023学年山东省德州市临邑县八年级(下)期末数学试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年山东省德州市临邑县七年级(下)期末数学试卷(含解析):

    这是一份2022-2023学年山东省德州市临邑县七年级(下)期末数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map