山东省德州市临邑县2023届九年级下学期开学考试数学试卷(含解析)
展开
这是一份山东省德州市临邑县2023届九年级下学期开学考试数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省德州市临邑县2022-2023学年第二学期九年级
数学开学考试测试卷
一、选择题(共48分)
1.下列图形中,是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
2.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是( )
A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,69
3.如图,是一个几何体的三视图,则这个几何体是( )
A.B.C.D.
4.如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为( )
A.4 B.4 C. D.2
5.如图,点A、B位于图中所示的双曲线上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为( )
A.4 B.6 C.8 D.12
6.如图.随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡L1、L2同时发光的概率为( )
A. B. C. D.
7.函数和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是( )
A.B.C.D.
8.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点M,连接OC,DB.如果OC∥DB,OC=2,那么图中阴影部分的面积是( )
A.π B.2π C.3π D.4π
9.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处,若AB=3,BC=5,则tan∠EFC的值( )
A. B. C. D.
10.如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC的边AB的长度为( )
A.12 B.8 C.10 D.13
11.如图,在△ABC中,D,E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点,若AC=6,则DH=( )
A.1 B.2 C.1.5 D.3
12.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为( )
A.3 B.4 C.5 D.6
二、填空题(共24分)
13.如图,在⊙O中,四边形OABC为菱形,点D在上,则∠ADC的度数是 .
14.若一个圆锥的底面半径是2cm,母线长是6cm,则该圆锥侧面展开图的圆心角是 度.
15.如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为 .
16.若关于x的一元二次方程(k﹣1)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围是 .
17.如图,在Rt△AOB中,OB=2,∠A=30°,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为 .
18.如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=﹣,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,…,依次进行下去,记点An的横坐标为an,若a1=2,则a2020= .
三、解答题(共78分)
19.(1)解方程:x2﹣4x﹣8=0;
(2)解不等式:.
20.为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为:A“剪纸”、B“沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图两幅不完整的统计图.
根据以上信息,回答下列问题:
(1)本次调查的样本容量为 ;统计图中的a= ,b= ;
(2)通过计算补全条形统计图;
(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.
21.如图,已知反比例函数y=的图象与直线y=ax+b相交于点A(﹣2,3),B(1,m).
(1)求出直线y=ax+b的表达式;
(2)在x轴上有一点P使得△PAB的面积为18,求出点P的坐标.
22.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.
(1)当售价为55元/千克时,每月销售水果多少千克?
(2)当月利润为8750元时,每千克水果售价为多少元?
(3)当每千克水果售价为多少元时,获得的月利润最大?
23.如图,在△ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.
(1)试证明DE是⊙O的切线;
(2)若⊙O的半径为5,AC=6,求此时DE的长.
24.如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.
(1)观察猜想.
图1中,线段NM、NP的数量关系是 ,∠MNP的大小为 .
(2)探究证明
把△ADE绕点A顺时针方向旋转到如图2所示的位置,连接MP、BD、CE,判断△MNP的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请求出△MNP面积的最大值.
25.若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).
(1)求二次函数的表达式;
(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;
(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.
①当m=时,求点P的坐标;
②求m的最大值.
参考答案
一、选择题(共48分)
1.解:A.该图形既不是是中心对称图形,也不是轴对称图形,故此选项不符合题意;
B.该图形是中心对称图形,不是轴对称图形,故此选项符合题意;
C.该图形既是中心对称图形,也是轴对称图形,故此选项不符合题意;
D.该图形不是中心对称图形,是轴对称图形,故此选项不符合题意;
故选:B.
2.解:∵x2﹣8x﹣5=0,
∴x2﹣8x=5,
则x2﹣8x+16=5+16,即(x﹣4)2=21,
∴a=﹣4,b=21,
故选:A.
3.解:结合三个视图发现,这个几何体是长方体和圆锥的组合图形.
故选:B.
4.解:连接CD,
∵AB=BC,∠BAC=30°,
∴∠ACB=∠BAC=30°,
∴∠B=180°﹣30°﹣30°=120°,
∴∠D=180°﹣∠B=60°,
∵AD是直径,
∴∠ACD=90°,
∵∠CAD=30°,AD=8,
∴CD=AD=4,
∴AC===4,
故选:B.
5.解:延长BA交y轴于E,则BE⊥y轴,如图:
∵点A在双曲线y=上,
∴四边形AEOD的面积为4,
∵点B在双曲线y=上,且AB∥x轴,
∴四边形BEOC的面积为12,
∴矩形ABCD的面积为12﹣4=8.
故选:C.
6.解:画树状图,如图所示:
随机闭合开关K1、K2、K3中的两个有六种情况:闭合K1K2,闭合K1K3,闭合K2K1,闭合K2K3,闭合K3K1,闭合K3K2,
能让两盏灯泡L1、L2同时发光的有两种情况:闭合K2K3,闭合K3K2,
则P(能让两盏灯泡L1、L2同时发光)==.
故选:D.
7.解:在函数(k≠0)和y=﹣kx+2(k≠0)中,
当k>0时,函数(k≠0)的图象位于第一、三象限,函数y=﹣kx+2的图象位于第一、二、四象限,故选项A、B错误,选项D正确,
当k<0时,函数(k≠0)的图象位于第二、四象限,函数y=﹣kx+2的图象位于第一、二、三象限,故选项C错误,
故选:D.
8.解:连接OD,BC,
∵CD⊥AB,OC=OD,
∴DM=CM,∠COB=∠BOD,
∵OC∥BD,
∴∠COB=∠OBD,
∴∠BOD=∠OBD,
∴OD=DB,
∴△BOD是等边三角形,
∴∠BOD=60°,
∴∠BOC=60°,
∵DM=CM,
∴S△OBC=S△OBD,
∵OC∥DB,
∴S△OBD=S△CBD,
∴S△OBC=S△DBC,
∴图中阴影部分的面积=扇形COB的面积==2π,
故选:B.
9.解:∵四边形ABCD为矩形,
∴AD=BC=5,AB=CD=3,
∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,
∴AF=AD=5,EF=DE,
在Rt△ABF中,BF=,
∴CF=BC﹣BF=5﹣4=1,
设CE=x,则DE=EF=3﹣x
在Rt△ECF中,∵CE2+FC2=EF2,
∴x2+12=(3﹣x)2,解得x=,
∴tan∠FEC=,
故选:C.
10.解:根据图2中的曲线可知:
当点P在△ABC的顶点A处,运动到点B处时,
图1中的AC=BC=13,
当点P运动到AB中点时,
此时CP⊥AB,
根据图2点Q为曲线部分的最低点,
得CP=12,
所以根据勾股定理,得
此时AP==5.
所以AB=2AP=10.
故选:C.
11.解:∵D、E为边AB的三等分点,EF∥DG∥AC
∴BE=DE=AD,BF=GF=CG,AH=HF,
∴AB=3BE,DH是△AEF的中位线,
∴DH=EF,
∵EF∥AC,
∴△BEF∽△BAC,
∴=,即 =,
解得:EF=2,
∴DH=EF=×2=1,
故选:A.
12.解:①由图象可知:a>0,c<0,
∵﹣=1,
∴b=﹣2a<0,
∴abc>0,故①错误;
②∵抛物线与x轴有两个交点,
∴b2﹣4ac>0,
∴b2>4ac,故②正确;
③当x=2时,y=4a+2b+c<0,故③错误;
④当x=﹣1时,y=a﹣b+c=a﹣(﹣2a)+c>0,
∴3a+c>0,故④正确;
⑤当x=1时,y取到值最小,此时,y=a+b+c,
而当x=m时,y=am2+bm+c,
所以a+b+c≤am2+bm+c,
故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,
⑥当x<﹣1时,y随x的增大而减小,故⑥错误,
故选:A.
二、填空题(共24分)
13.解:∵四边形ABCD内接于⊙O,
∴∠B+∠D=180°,
∵四边形OABC为菱形,
∴∠B=∠AOC,
∴∠D+∠AOC=180°,
∵∠AOC=2∠D,
∴3∠D=180°,
∴∠ADC=60°,
故答案为60°.
14.解:圆锥侧面展开图的弧长是:2π×2=4π(cm),
设圆心角的度数是n度.则=4π,
解得:n=120.
故答案为:120.
15.解:平面直角坐标系如图所示,旋转中心是P点,P(4,2).
故答案为:(4,2).
16.解:∵原方程是关于x得一元二次方程,
∴k﹣1≠0
解得:k≠1,
又∵原方程有两个不相等的实数根,
∴Δ=4+4(k﹣1)>0,
解得:k>0,
即k得取值范围是:k>0且k≠1,
故答案为:k>0且k≠1.
17.解:连接OP、OQ,作OP′⊥AB于P′,
∵PQ是⊙O的切线,
∴OQ⊥PQ,
∴PQ==,
当OP最小时,线段PQ的长度最小,
当OP⊥AB时,OP最小,
在Rt△AOB中,∠A=30°,
∴OA==6,
在Rt△AOP′中,∠A=30°,
∴OP′=OA=3,
∴线段PQ长度的最小值==2,
故答案为:2.
18.解:当a1=2时,B1的横坐标与A1的横坐标相等为a1=2,
A2的纵坐标和B1的纵坐标相同为y2=﹣=﹣,
B2的横坐标和A2的横坐标相同为a2=﹣,
A3的纵坐标和B2的纵坐标相同为y3=﹣=,
B3的横坐标和A3的横坐标相同为a3=﹣,
A4的纵坐标和B3的纵坐标相同为y4=﹣=3,
B4的横坐标和A4的横坐标相同为a4=2=a1,
…
由上可知,a1,a2,a3,a4,a5,…,3个为一组依次循环,
∵2020÷3=673…1,
∴a2020=a1=2,
故答案为:2.
三、解答题(共78分)
19.解:(1)x2﹣4x﹣8=0,
x2﹣4x=8,
x2﹣4x+4=12,
(x﹣2)2=12,
x﹣2=±2,
所以x1=2+2,x2=2﹣2;
(2)去分母得4(x+1)﹣12<3(x﹣1),
去括号得4x+4﹣12<3x﹣3,
移项得4x﹣3x<﹣3﹣4+12,
合并得x<5.
20.解:(1)18÷15%=120(人),因此样本容量为120;
a=120×10%=12(人),b=120×30%=36(人),
故答案为:120,12,36;
(2)E组频数:120﹣18﹣12﹣30﹣36=24(人),
补全条形统计图如图所示:
(3)2500×=625(人),
答:估计该校2500名学生中喜爱“葫芦雕刻”的有625人.
21.解:(1)将点A的坐标代入反比例函数表达式并解得:k=﹣2×3=﹣6,
故反比例函数表达式为:y=﹣,
将点B的坐标代入上式并解得:m=﹣6,故点B(1,﹣6),
将点A、B的坐标代入一次函数表达式得,解得,
故直线的表达式为:y=﹣3x﹣3;
(2)连接AP、BP,
设直线与x轴的交点为E,当y=0时,x=﹣1,故点E(﹣1,0),
分别过点A、B作x轴的垂线AC、BD,垂足分别为C、D,
则S△PAB=PE•CA+PE•BD=PEPE=PE=18,解得:PE=4,
故点P的坐标为(3,0)或(﹣5,0).
22.解:(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;
(2)设每千克水果售价为x元,
由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],
解得:x1=65,x2=75,
答:每千克水果售价为65元或75元;
(3)设每千克水果售价为m元,获得的月利润为y元,
由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,
∴当m=70时,y有最大值为9000元,
答:当每千克水果售价为70元时,获得的月利润最大值为9000元.
23.(1)证明:连接OD、BD,
∵AB是⊙O直径,
∴∠ADB=90°,
∴BD⊥AC,
∵AB=BC,
∴D为AC中点,
∵OA=OB,
∴OD∥BC,
∵DE⊥BC,
∴DE⊥OD,
∵OD为半径,
∴DE是⊙O的切线;
(2)由(1)知BD是AC的中线,
∴AD=CD==3,
∵⊙O的半径为5,
∴AB=10,
∴BD===,
∵AB=BC,
∴∠A=∠C,
∵∠ADB=∠CED=90°,
∴△CDE∽△ABD,
∴,即=,
∴DE=3.
24.解:(1)∵AB=AC,AD=AE,
∴BD=CE,
∵点M、N、P分别为DE、BE、BC的中点,
∴MN=BD,PN=CE,MN∥AB,PN∥AC,
∴MN=PN,∠ENM=∠EBA,∠ENP=∠AEB,
∴∠MNE+∠ENP=∠ABE+∠AEB,
∵∠ABE+∠AEB=180°﹣∠BAE=60°,
∴∠MNP=60°,
故答案为:NM=NP;60°;
(2)△MNP是等边三角形.
理由 如下:由旋转可得,∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴BD=CE,∠ABD=∠ACE,
∵点M、N、P分别为DE、BE、BC的中点.
∴MN=BD,PN=CE,MN∥BD,PN∥CE,
∴MN=PN,∠ENM=∠EBD,∠BPN=∠BCE,
∴∠ENP=∠NBP+∠NPB=∠NBP+∠ECB,
∵∠EBD=∠ABD+∠ABE=∠ACE+∠ABE,
∴∠MNP=∠MNE+∠ENP=∠ACE+∠ABE+∠EBC+∠EBC+∠ECB=180°﹣∠BAC=60°,
∴△MNP是等边三角形;
(3)根据题意得,BD≤AB+AD,即BD≤4,
∴MN≤2,
∴△MNP的面积==,
∴△MNP的面积的最大值为.
25.解:(1)一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,则点A、C的坐标分别为(﹣1,0)、(0,﹣3),
将点A、B、C的坐标代入抛物线表达式得,解得,
故抛物线的表达式为:y=x2﹣2x﹣3;
(2)设直线BE交y轴于点M,
从抛物线表达式知,抛物线的对称轴为x=1,
∵CD∥x轴交抛物线于点D,故点D(2,﹣3),
由点B、C的坐标知,直线BC与AB的夹角为45°,即∠MCB=∠DCB=45°,
∵BC恰好平分∠DBE,故∠MBC=∠DBC,
而BC=BC,
故△BCD≌△BCM(ASA),
∴CM=CD=2,故OM=3﹣2=1,故点M(0,﹣1),
设直线BE的表达式为:y=kx+b,则,解得,
故直线BE的表达式为:y=x﹣1;
(3)过点P作PN∥x轴交BC于点N,
则△PFN∽△AFB,则,
而S△BFP=mS△BAF,则=,解得:m=PN,
①当m=时,则PN=2,
设点P(t,t2﹣2t﹣3),
由点B、C的坐标知,直线BC的表达式为:y=x﹣3,当x=t﹣2时,y=t﹣5,故点N(t﹣2,t﹣5),
故t﹣5=t2﹣2t﹣3,
解得:t=1或2,故点P(2,﹣3)或(1,﹣4);
②m=PN=[t﹣(t2﹣2t)]=﹣(t﹣)2+,
∵<0,故m的最大值为.
相关试卷
这是一份2023-2024学年山东省德州市临邑县万力学校八年级(上)开学数学试卷(含解析),共23页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年山东省德州市临邑县八年级(下)期末数学试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年山东省德州市临邑县七年级(下)期末数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。