所属成套资源:2023年中考数学二轮专题提升训练
专题13 旋转中的全等模型-2023年中考数学二轮专题提升训练
展开
这是一份专题13 旋转中的全等模型-2023年中考数学二轮专题提升训练,共27页。试卷主要包含了对角互补模型,手拉手模型——旋转全等,通过旋转构造三角形全等等内容,欢迎下载使用。
专题13 旋转中的全等模型
类型一 对角互补模型
(1)正方形中的半角模型
(2021春•平阴县期末)
1.如图,在正方形中,E、F是对角线上两点,且,将绕点A顺时针旋转后,得到,连接.
(1)求证:;
(2)求证:;
(3)当F是的中点时,判断四边形的形状,并说明理由.
(2)等腰三角形中的半角模型
(2021秋•东坡区期末)
2.如图,△ABC是边长为6的等边三角形,BD=CD,∠BDC=120°,以点D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长是________.
(绍兴中考)
3.如图,等腰直角三角形ABC中,∠BAC= 90°,AB=AC,点M,N在边BC 上,且∠MAN=45°.若BM= 1,CN=3,求MN的长.
类型二 对角互补且一组邻边相等的半角模型
(2022春•简阳市期中)
4.如图,等边三角形ABC的边长为4, 点O是的中心, ∠FOG = 120°, 绕点O旋转∠FOG,分别交线段AB、BC于D、 E两点,连接DE,给出下列四个结论:①OD= OE;②;③四边形ODBE的面积始终等于;④周长的最小值为6.上述结论中正确的有_________(写出序号)
(2022秋•西城区校级期中)
5.(1)问题背景.
如图1,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是线段BC、线段CD上的点.若∠BAD=2∠EAF,试探究线段BE、EF、FD之间的数量关系.
童威同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG.再证明△AEF≌△AGF,可得出结论,他的结论应是__________________.
(2)猜想论证.
如图2,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E在线段BC上、F在线段CD延长线上. 若∠BAD=2∠EAF,上述结论是否依然成立?若成立说明理由;若不成立,试写出相应的结论并给出你的证明.
(3) 拓展应用.
如图3,在四边形ABDC中,∠BDC=45°,连接BC、AD,AB:AC:BC=3:4:5,AD=4,且∠ABD+∠CBD=180°.则△ACD的面积为
(2020秋•海淀区期中)
6.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120゜,∠MBN=60゜,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.
(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想线段AE、CF、EF之间存在的数量关系为 .(不需要证明);
(2)当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE、CF、EF又有怎样的数量关系?请写出你的猜想,不需证明.
类型三 手拉手模型——旋转全等
(2022•沈阳)
7.【特例感知】
(1)如图1,和是等腰直角三角形,,点在上,点在的延长线上,连接,,线段与的数量关系是______;
【类比迁移】
(2)如图2,将图1中的绕着点顺时针旋转,那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.
(2022春•南山区期末)
8.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从点O出发,沿射线OM方向以1cm/s的速度运动,当D不与点A重合时,将线段CD绕点C逆时针方向旋转60°得到CE,连接DE、BE,设点D运动了ts.
(1)点D的运动过程中,线段AD与BE的数量关系是______,请以图1情形为例(当点D在线段OA上时,点D与点A不重合),说明理由.
(2)当6
相关试卷
这是一份专题13 旋转中的全等模型-2023年中考数学二轮复习核心考点拓展训练(解析版),共25页。试卷主要包含了对角互补模型,手拉手模型——旋转全等,通过旋转构造三角形全等等内容,欢迎下载使用。
这是一份专题13 旋转中的全等模型-2023年中考数学二轮专题提升训练,共27页。试卷主要包含了对角互补模型,手拉手模型——旋转全等,通过旋转构造三角形全等等内容,欢迎下载使用。
这是一份专题33 从全等到相似类比探究-2023年中考数学二轮专题提升训练,共33页。试卷主要包含了从全等到相似——旋转变换,从全等到相似——变式探究,从全等到相似——从特殊到一般等内容,欢迎下载使用。