|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题04 一元二次方程根的判别式的应用及根与系数的关系的应用-2023年中考数学二轮专题提升训练
    立即下载
    加入资料篮
    专题04 一元二次方程根的判别式的应用及根与系数的关系的应用-2023年中考数学二轮专题提升训练01
    专题04 一元二次方程根的判别式的应用及根与系数的关系的应用-2023年中考数学二轮专题提升训练02
    专题04 一元二次方程根的判别式的应用及根与系数的关系的应用-2023年中考数学二轮专题提升训练03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题04 一元二次方程根的判别式的应用及根与系数的关系的应用-2023年中考数学二轮专题提升训练

    展开
    这是一份专题04 一元二次方程根的判别式的应用及根与系数的关系的应用-2023年中考数学二轮专题提升训练,共20页。试卷主要包含了根的判别式的应用,根与系数关系的应用等内容,欢迎下载使用。

    专题04 一元二次方程根的判别式的应用及根与系数的关系的应用

    类型一 根的判别式的应用

    1)利用判别式判断方程根的情况

    2022•济源校级模拟)

    1.定义运算:.例如:.则方程的根的情况为(    ).

    A.有两个不相等的实数根 B.有两个相等的实数根

    C.没有实数根 D.以上结论都不对

    2022平潭县期末)

    2.对于任意实数k,关于x的方程的根的情况为(    

    A.有两个相等的实数根 B.无实数根

    C.有两个不相等的实数根 D.无法判定

    2)利用判别式求字母系数的值或取值范围

    2021文登区期中)

    3.已知关于x的方程(k﹣1x2x20有两个实数解,则k的取值范围为________

    2018•南通)

    4若关于x的一元二次方程有两个相等的实数根,则的值为__

    3)根据字母系数判断方程根的情况

    2022•焦作模拟)

    5.在平面直角坐标系中,若直线不经过第二象限,则关于x的方程的实数根的情况为(    

    A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法判断

    2022福鼎市期中)

    6.对于一元二次方程,下列说法:

    ,则它有一根为﹣1

    若方程有两个不相等的实根,则方程必有两个不相等的实根;

    c是方程的一个根,则一定有成立;

    ,则一元二次方程有两个不相等的实数根;

    其中正确的______

    类型二 根与系数关系的应用

    1)利用根与系数关系求代数式的值

    2022电白区期中)

    7.已知是一元二次方程的两个实数根,则代数式的值等于(    

    A B C D

    2021余干县校级月考)

    8.已知是一元二次方程的两个实数根,则代数式________

    2001•咸宁)

    9.已知是方程的两实数根,则代数式___

    2022新田县期中)

    10.若是方程的两个实数根,则代数式的值等于(    

    A B C D

    2022罗庄区校级月考)

    11.阅读理解:法国数学家韦达在研究一元二次方程时有一项重大发现:如果一元二次方程的两个根分别是,那么

    例如:方程的两根分别是,则

    请同学们阅读后利用上述结论完成下列问题:

    (1)已知方程的两根分别是,则               

    (2)已知方程的两根分别是

    的值;

    的值.

    2022荔湾区校级期末)

    12.已知关于x的一元二次方程的一个根比另一个根大2,则m的值为(    

    A2 B  C1 D0

    2019博白县期中)

    13.已知的两个根,则的最小值是___

    14.已知,且有,则的值为(    

    A B2018 C3 D

    类型三 一元二次的判别式及根与系数关系的综合应用

    2021黔东南州期末)

    15.关于x的方程p为常数)的根的情况,下列结论中正确的是(    

    A.两个正根 B.两个负根

    C.一个正根,一个负根 D.无实数根

    2022•泰山区校级二模)

    16.如果关于x的一元二次方程x2+2x+6-b=0有两个相等的实数根x1=x2=k,则直线y=kx+b必定经过的象限是(  )

    A.一、二、三 B.一、二、四 C.二、三、四 D.一、三、四

    2020岫岩县月考)

    17.已知关于的一元二次方程的两个根分别为,利用一元二次方程的求根公式可得:,利用上述结论来解答下列问题:

    1)已知的两个根为,则____________

    2)已知关于的一元二次方程有两个实数根,若,求的值.

    18.已知关于x的一元二次方程

    (1)求证:无论k取何值时,方程总有两个不相等的实数根;

    (2)若方程的两根是斜边长为5的直角三角形两直角边长,求k的值.

    2022郾城区期中)

    19.已知一元二次方程x22k+1x+k2+k0

    1)求证:方程有两个不相等的实数根;

    2)若ABC的两边ABAC的长是这个方程的两个实数根,第三边BC的长为4,当ABC是等腰三角形时,求k的值.

    20.已知实数ab,满足

    (1)的值;

    (2)的值.

    2020•浙江自主招生)

    21.已知关于x的方程有实根.

    1)求取值范围;

    2)若原方程的两个实数根为,且,求的值.

    2022城关区校级期中)

    22.阅读理解:

    材料1:对于一个关于x的二次三项式a≠0),除了可以利用配方法求该多项式的取值范围外,爱思考的小川同学还想到了其他的方法:比如先令a≠0),然后移项可得:,再利用一元二次方程根的判别式来确定y的取值范围,请仔细阅读下面的例子:

    例:求的取值范围;

    解:令

    ∴Δ4﹣4×5﹣y≥0

    y≥4

    材料2:在学习完一元二次方程的解法后,爱思考的小川同学又想到仿造一元二次方程的解法来解决一元二次不等式的解集问题,他的具体做法如下:

    若关于x的一元二次方程a0)有两个不相等的实数根

    则关于x的一元二次不等式a0)的解集为:

    则关于x的一元二次不等式a0)的解集为:

    请根据上述材料,解答下列问题:

    (1)若关于x的二次三项式a为常数)的最小值为﹣6,则a  

    (2)求出代数式的取值范围;

    (3)若关于x的代数式(其中mn为常数且m≠0)的最小值为﹣4,最大值为7,请求出满足条件的mn的值.


    参考答案:

    1A

    【分析】根据新定义列出一元二次方程,根据一元二次方程根的判别式求解即可.

    【详解】解:

    ,即

    整理得,

    方程有两个不相等的实数根.

    故选A

    【点睛】本题考查了一元二次方程根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.

    2B

    【分析】先计算根的判别式的值,得到,然后根据根的判别式的意义判断方程根的情况.

    【详解】解:

    方程无实数根.

    故选B

    【点睛】本题考查了根的判别式与一元二次方程的根的关系,即当> 0时,方程有两个不相等的实数根,当= 0时,方程有两个相等的实数根,当 < 0时, 方程无实数根.

    3

    【分析】根据二次项系数非零、被开方数非负及根的判别式△≥0列出关于 k 的一元一次不等式组求解即可.

    【详解】解:关于 x 的一元二次方程(k﹣1x2+x+20 有两个实数解,

    解得:

    故填

    【点睛】本题主要考查了根的判别式、二次根式以及一元二次方程的定义,当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.

    4

    【分析】根据根的判别式即可求出答案.

    【详解】由题意可知:4m2−21−4m)=4m28m−20

    ∴m22m

    m−22−2mm−1)=−m2−2m4=

    故答案为.

    【点睛】本题考查根的判别式,解题的关键是正确理解根的判别式的作用,本题属于基础题型.

    5A

    【分析】利用一次函数的性质得到,再判断,从而得到方程根的情况.

    【详解】解:一次函数的图像不经过第二象限,

    方程有两个不相等的实数根.

    故选:A

    【点睛】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.也考查了一次函数的性质.

    6①②④

    【分析】利用因式分解法解方程可对进行判断;根据根的判别式的意义,由方程有两个不相等的实根得到,则可判断,于是可对进行判断;由c是方程的一个根得到,只有当时,,则可对进行判断;利用计算根的判别式得到,则根据根的判别式的意义可对进行判断.

    【详解】解:若时,则

    原方程为

    解得,,故正确;

    若方程有两个不相等的实根,则

    方程的根的判别式

    方程必有两个不相等的实根,故正确;

    c是方程的一个根,

    时,,故错误;

    ,则

    一元二次方程有两个不相等的实数根,故正确;

    故答案为:①②④

    【点睛】本题主要考查了解一元二次方程,一元二次方程根的判别式,对于一元二次方程,若,则方程有两个不相等的实数根,若,则方程有两个相等的实数根,若,则方程没有实数根.

    7C

    【分析】根据一元二次方程根的定义得到,则,再利用根与系数的关系得到,然后利用整体代入的方法计算.

    【详解】解:是一元二次方程的实数根,

    是一元二次方程的两个实数根,

    故选:

    【点睛】本题考查了根与系数的关系:若是一元二次方程的两根时,也考查了一元二次方程的解.

    81

    【分析】根据韦达定理可得,整体代入求解即可.

    【详解】解:是一元二次方程的两个实数根,

    故答案为:1

    【点睛】本题考查韦达定理,掌握韦达定理是解题的关键.

    9

    【分析】根据一元二次方程的根与系数的关系求得,然后将其代入由变形后的代数式求值.

    【详解】解:是方程的两实数根,

    即有:

    故答案是:

    【点睛】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.

    10C

    【分析】根据一元二次方程根与系数的关系可知,将变形后得到,由此即可求解.

    【详解】解:是方程的两个实数根,且

    故选:

    【点睛】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.

    11(1)

    (2)①31②29

     

    【分析】(1)先把方程化为一般式,然后利用一元二次方程的根与系数的关系即可得;

    2根据一元二次方程的根与系数的关系可得,利用完全平方公式得到,然后利用整体代入的方法计算即可得;

    先根据一元二次方程根的定义得到,则,然后利用整体代入的方法计算即可得.

    【详解】(1)解:方程,即的两根分别是

    故答案为:

    2)解:方程的两根分别是

    方程的两根分别是

    【点睛】本题主要考查了一元二次方程的根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.

    12C

    【分析】设方程的两根分别为t,利用根与系数的关系得到,利用代入消元法得到,然后解关于m的方程得到满足条件的m的值.

    【详解】解:设方程的两根分别为t

    根据题意得:

    代入

    整理得

    解得:(舍去),

    m的值为1,故C正确.

    故选:C

    【点睛】本题主要考查了根与系数的关系:若是一元二次方程的两根时,

    1322

    【分析】根据根与系数的关系和完全平方公式求解即可求出答案.

    【详解】解:由题意可知:

    原式

    其对称轴为: ,对称轴右边的增大而增大,

    时,原式的最小值为22

    故答案为:22

    【点睛】本题考查了一元二次方程,二次函数的性质,解题的关键是熟练运用根与系数的关系,本题属于基础题型.

    14D

    【分析】把两边都除以,得,从而知x的两根,根据韦达定理可得答案.

    【详解】解:

    x的两根,

    3

    故选:D

    【点睛】本题考查了根与系数的关系.根据已知条件得到x是关于x的方程的两根是解题的难点.

    15C

    【分析】先把方程化成一般形式,再根据的结果判断根的情况,然后根据两根之积可得出结论.

    【详解】解:关于x的方程p为常数),

    方程有两个不相等的实数根.

    根据根与系数的关系,方程的两个根的积为

    一个正根,一个负根.

    故选:C

    【点睛】本题主要考查了一元二次方程根的判别式,根与系数的关系等,若是一元二次方程的两根时,.当,方程有实数根,当时,方程没有实数根.

    16B

    【分析】一元二次方程x2+2x+6-b=0有两个相等的实数根,则判别式的值为0,就要以求出b的值,由根与系数的关系可得2k=-2,就可以求出k的值,进而可以判断一次函数经过的象限.

    【详解】关于x的一元二次方程x2+2x+6-b=0有两个相等的实数根x1=x2=k

    ∴△=22-4×(6-b)=0

    b=5

    由根与系数的关系,得2k=-2

    k=-1

    直线y=kx+b经过第一、二、四象限.

    故选:B

    【点睛】本题考查了一元二次方程根的判别式、根与系数的关系,一次函数的图象及性质,综合运用一元二次方程根的判别式和根与系数的关系是解题的关键.

    17.(1;(23

    【分析】(1)由韦达定理直接得出m+nmn的值即可;

    2)由韦达定理可得:,将它们代入变形后的一元二次方程,得到关于k的一元二次方程,解方程求出k的值,并根据根的判别式对一元二次方程的实数根的情况进行判断,不合题意的k值舍去即可.

    【详解】解:(1

    2关于的一元二次方程有两个实数根

    ,即

    ,整理得:

    时,原方程为

    符合题意;

    时,原方程为

    不符合题意,舍去.

    的值为3

    【点睛】本题主要考查一元二次方程的解法、韦达定理以及根的判别式,熟记公式并整体代入是解题关键.

    18(1)见解析;

    (2)3

     

    【分析】(1)先根据判别式的值得到,然后根据判别式的意义可判断方程总有两个不相等的实数根;

    2)根据根与系数的关系得到,再根据勾股定理得到,接着利用完全平方公式变形得到,则,然后解方程后利用方程的两根为正数确定k的值.

    【详解】(1)证明:

    所以无论k取何值时,方程总有两个不相等的实数根;

    2)解:

    是斜边长为5的直角三角形两直角边长,

    整理得

    解得:

    k的值为3

    【点睛】本题考查了一元二次方程根的情况及根与系数的关系,因式分解法解一元二次方程;熟练掌握根的判别式及根与系数的关系是解题的关键,对于一元二次方程,若,方程有两个不相等的实数根,若,方程有两个相等的实数根,若,方程无实数根;若是一元二次方程的两根时,

    19.(1)见解析;(2k的值为34

    【分析】(1)根据计算一元二次方程根的判别式,其结果大于0即可得证;

    2)根据一元二次方程根的意义,代入,求得,进而解一元二次方程,根据等腰三角形的定义以及构成三角形的条件分析判断即可.

    【详解】(1)证明:[﹣2k+1]2﹣4k2+k)=10

    无论k为何值,方程总有两个不相等的实数根;

    2)解:10

    ABAC

    ABAC中有一个数为4

    x4时,原方程为:16﹣42k+1+k2+k0

    k2﹣7k+120,解得:k13k24

    k3时,原方程为x2﹣7x+120

    x13x24

    ∵344能围成等腰三角形,

    k3符合题意;

    k4时,原方程为x2﹣9x+200,解得:x14x25

    ∵455能围成等腰三角形,

    k4符合题意.

    综上所述:k的值为34

    【点睛】本题考查了一元二次方程根的判别式,解一元二次方程,一元二次方程根的意义,等腰三角形的定义,构成三角形的条件,第二问中对等腰三角形的分类讨论是解题的关键.

    20(1)

    (2)8

     

    【分析】1)根据完全平方公式以及配方法即可求出答案.

    2)根据配方法对该分式进行变形,然后将的值代入即可求出答案.

    【详解】(1)解:由题意可知:

    解得:

    是方程的两个实根,

    时,

    时,

    2)解:原式

    时,

    原式

    【点睛】本题考查分式的运算及一元二次方程根的判别式,解题的关键是熟练运用分式的运算法则以及完全平方公式,本题属于中等题型.

    21.(1;(2

    【分析】(1),分两种情况讨论,①方程为一元一次方程,②方程为二元一次方程,那么有, 根据△≥0即可求解;

    (2),根据根与系数的关系即可求解.

    【详解】设,则原方程化为:

    当方程(2)为一次方程时,

    a 2-1=0a=±1

    a=1,方程(2)的解为,原方程的解为满足条件;

    a=1,方程(2)的解为,原方程的解为满足条件;

    ∴a=±1

    当方程为二次方程时,a 2-1≠0,则a≠±1

    要使方程有解,则

    解得:,此时原方程没有增根,

    取值范围是

    2)设,则

    是方程(a 2-1y 2-2a+7y+1=0的两个实数根,

    由韦达定理得:

    ,解得:

    【点睛】题考查了根与系数的关系根的判别式及分类讨论的数学思想,关键是掌握根与系数之间的关系进行解题.

    22(1)a6a﹣6

    (2)yy≥﹣2

    (3)

     

    【分析】(1)根据材料一设,化为x的一元二次方程用△≥0y的范围,再列出a的方程求解;

    2)设y,变形之后用△≥0求解,再根据材料二得到结论;

    3)用△≥0得到代数式值的不等式,已知代数式值的最大、最小值,实质是已知和这个不等式对应的方程的二根,代入便可以求解.

    【详解】(1)解:设,变形为

    ∵△≥0

    可得

    而由已知y≥﹣6,故3﹣﹣6

    a6a﹣6

    2)设y,变形为

    ∵△≥0

    ,化简得

    先求出的二根

    根据材料二得yy≥﹣2

    3)设y,变形得

    ∵△≥0

    整理得

    由已知可得﹣4≤y≤7

    根据材料二知的二根是

    代入整理得

    解得

    【点睛】本题难度较大,主要考查阅读能力,能灵活运用阅读材料,涉及方程、不等式解的关系和一元二次方程根的判别式.

     

    相关试卷

    中考数学二轮复习核心考点专题04一元二次方程根的判别式的应用及根与系数的关系的应用含解析答案: 这是一份中考数学二轮复习核心考点专题04一元二次方程根的判别式的应用及根与系数的关系的应用含解析答案,共18页。试卷主要包含了定义运算,已知,且有及,则的值为,关于x的方程等内容,欢迎下载使用。

    专题04 一元二次方程根的判别式的应用及根与系数的关系的应用-2023年中考数学二轮复习核心考点拓展训练(解析版): 这是一份专题04 一元二次方程根的判别式的应用及根与系数的关系的应用-2023年中考数学二轮复习核心考点拓展训练(解析版),共16页。试卷主要包含了根的判别式的应用,根与系数关系的应用等内容,欢迎下载使用。

    专题04 一元二次方程根的判别式的应用及根与系数的关系的应用-2023年中考数学二轮复习核心考点专题提优拓展训练: 这是一份专题04 一元二次方程根的判别式的应用及根与系数的关系的应用-2023年中考数学二轮复习核心考点专题提优拓展训练,文件包含专题04一元二次方程根的判别式的应用及根与系数的关系的应用解析版docx、专题04一元二次方程根的判别式的应用及根与系数的关系的应用原卷版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题04 一元二次方程根的判别式的应用及根与系数的关系的应用-2023年中考数学二轮专题提升训练
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map