高考数学一轮复习题型归纳讲义 专题10 数列 10.4数列求和 题型归纳讲义 (原卷版+解析版)
展开中考数学复习策略(仅供参考)
中考复习中,数学占据了一定的位置,那么初三数学生要从哪几方面着手复习呢?
1、学生在第一轮复习阶段不要只钻难题、偏题,也不要搞题海战术,要注重学习方法,回归课本,抓住典型题目进行练习。
课本上的例题最具有典型性,可以有选择地做。在做例题时,要把其中包含的知识点抽出来进行总结、归纳,不要就题论题。另外,对于一些易错题,要在复习阶段作为重点复习,反复审题,加强理解。
2、要注重知识点的梳理,将知识点形成网络。学生经过一学期的学习,要将知识点进行总结归纳,找出区别与联系。
把各章的知识点绘制成知识网络图,将知识系统化、网络化,把知识点串成线,连成面。
3、要注重总结规律,加强解题后的反思。
期末考试前,学校一般都会组织模拟练习,学生要认真对待,注意记录、总结老师对模拟练习的讲评分析。通过模拟练习题,找出复习重点和自身的薄弱点,认真总结解题的规律方法,切忌不要闷头做题。
专题十 《数列》讲义
10.4 数列求和
知识梳理.数列求和
1.公式法
(1)等差数列{an}的前n项和Sn==na1+.
推导方法:倒序相加法.
(2)等比数列{an}的前n项和Sn=
推导方法:乘公比,错位相减法.
(3)一些常见的数列的前n项和:
①1+2+3+…+n=;
②2+4+6+…+2n=n(n+1);
③1+3+5+…+(2n-1)=n2.
2.几种数列求和的常用方法
(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.
(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n项和.
(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n项和即可用错位相减法求解.
(4)倒序相加法:如果一个数列{an}与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解.
题型一. 裂项相消
1.数列{an}的通项公式an,已知它的前n项和Sn,则项数n=( )
A.98 B.99 C.100 D.101
2.已知等差数列{an}满足a3=10,a1+a4=17.
(1)求{an}的通项公式;
(2)设bn,求数列{bn}的前n项和Sn.
3.已知数列{an}的前n项和为Sn,若4Sn=(2n﹣1)an+1+1,且a1=1.
(1)求数列{an}的通项公式;
(2)设,数列{cn}的前n项和为Tn,求Tn.
题型二. 错位相减
1.已知等差数列{an}公差不为零,且满足:a1=2,a1,a2,a5成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设,求数列{bn}的前n项和.
2.已知等差数列{an}的前n项和为Sn,S5=30,S7=56;各项均为正数的等比数列{bn}满足b1b2,b2b3.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{an•bn}的前n项和Tn.
3.(2015·山东)设数列{an}的前n项和为Sn,已知2Sn=3n+3.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn},满足anbn=log3an,求{bn}的前n项和Tn.
题型三. 分组求和
1.已知数列{an}是公差不为零的等差数列,a1=2,且a1,a2,a4成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=an﹣,求数列{bn}的前n项和Sn.
2.在公差不为0的等差数列{an}中,a1,a3,a9成公比为a3的等比数列,又数列{bn}满足(k∈N*).
(1)求数列{an}的通项公式;
(2)求数列{bn}的前2n项和T2n.
3.已知数列{an}、{bn}满足:an+1=an+bn,{bn+2}为等比数列,且b1=2,a2=4,a3=10.
(1)试判断数列{bn}是否为等差数列,并说明理由;
(2)求数列{an}的前n项和Sn.
题型四. 讨论奇偶、绝对值求和
1.数列{an}的前n项和记为Sn,对任意的正整数n,均有4Sn=(an+1)2,且an>0.
(1)求a1及{an}的通项公式;
(2)令,求数列{bn}的前n项和Tn.
2.已知等差数列{an}前n项和为Sn,a5=9,S5=25.
(1)求数列{an}的通项公式及前n项和Sn;
(2)设,求{bn}前2n项和T2n.
3.已知数列{an}满足a1=﹣2,an+1=2an+4.
(1)求a2,a3,a4;
(2)猜想{an}的通项公式并加以证明;
(3)求数列{|an|}的前n项和Sn.
题型五. 数列求和选填综合
1.首项为正数的等差数列{an}中,,当其前n项和Sn取最大值时,n的值为( )
A.5 B.6 C.7 D.8
2.在等比数列{an}中,a2•a3=2a1,且a4与2a7的等差中项为17,设bn=a2n﹣1﹣a2n,n∈N*,则数列{bn}的前2n项和为 .
3.已知数列{an}的前n项和为Sn,a1=1,a2=2且对于任意n>1,n∈N*满足Sn+1+Sn﹣1=2(Sn+1),则( )
A.a4=7 B.S16=240 C.a10=19 D.S20=381
4.已知数列{an}是首项为1,公差为2的等差数列,数列{bn}满足关系,数列{bn}的前n项和为Sn,则S5的值为( )
A.﹣454 B.﹣450 C.﹣446 D.﹣442
5.已知数列{an}满足,,若,则c1+c2+⋅⋅⋅+cn= .
6.已知数列{an}的前n项和为Sn,a1=2,Sn=λan﹣2,其中λ为常数,若anbn=13﹣n,则数列{bn}中的项的最小值为 .
7.已知数列{an}和{bn}首项均为1,且an﹣1≥an(n≥2),an+1≥an,数列{bn}的前n项和为Sn,且满足2SnSn+1+anbn+1=0,则S2019=( )
A.2019 B. C.4037 D.
8.已知数列{an}满足:a1=1,a2,(n≥2且n∈N+),等比数列{bn}公比q=2,令cn则数列{cn}的前n项和S2n= .
9.已知数列{an}满足2anan+1+an+3an+1+2=0,其中,设,若b3为数列{bn}中唯一最小项,则实数λ的取值范围是
课后作业. 数列求和
1.已知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比.
(1)求数列{an}的通项公式;
(2)设Tn为数列{}的前n项和,若λTn≤an+1对一切n∈N*恒成立,求实数λ的最大值.
2.设等差数列{an}的前n项和为Sn,a3=6,a7=14.
(1)求数列{an}的通项公式及Sn;
(2)若_____,求数列{bn}的前n项和Tn.
在①bn=2•an;②bn;③bn=(﹣1)n•an这三个条件中任选一个补充在第(2)问中,并对其求解.
3.已知数列{an}的各项均为正数,前n项和为Sn,且Sn(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn,Tn=b1+b2+…+bn,求Tn.
4.在数列{an}中,a1,对任意的n∈N*,都有成立.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前n项和Sn;并求满足Sn时n的最大值.
新高考数学一轮复习题型归纳讲义专题10 数列 10.4数列求和(含解析): 这是一份新高考数学一轮复习题型归纳讲义专题10 数列 10.4数列求和(含解析),共22页。试卷主要包含了4 数列求和,))等内容,欢迎下载使用。
高考数学一轮复习题型归纳讲义 专题10 数列 专项练习 (原卷版+解析版): 这是一份高考数学一轮复习题型归纳讲义 专题10 数列 专项练习 (原卷版+解析版),文件包含专题10数列专项练习解析版docx、专题10数列专项练习原卷版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
高考数学一轮复习题型归纳讲义 专题10 数列 10.3数列求通项 题型归纳讲义 (原卷版+解析版): 这是一份高考数学一轮复习题型归纳讲义 专题10 数列 10.3数列求通项 题型归纳讲义 (原卷版+解析版),文件包含专题10数列103数列求通项题型归纳讲义解析版docx、专题10数列103数列求通项题型归纳讲义原卷版docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。