所属成套资源:2023年高考数学必做模拟卷—新高考Ⅱ考纲卷10套
2023年高考数学必做模拟卷—新高考Ⅱ考纲卷09
展开
这是一份2023年高考数学必做模拟卷—新高考Ⅱ考纲卷09,文件包含2023年高考数学必做模拟卷新高考Ⅱ考纲卷09解析版docx、2023年高考数学必做模拟卷新高考Ⅱ考纲卷09原卷版docx、2023年高考数学必做模拟卷新高考Ⅱ考纲卷09答案docx等3份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
2023年高考必做模拟卷—新高考Ⅱ考纲卷09一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知全集,集合,集合,则( )。A、 B、 C、 D、2.在复平面内,复数满足,则复数对应的点位于( )。A、第一象限 B、第二象限 C、第三象限 D、第四象限3.近年来,黄金周给百姓的生活带来了巨大变化。不断增长的旅游需求,日益完善的旅游市场和四通八达的交通出行,让人们对黄金周热情不改。而随着社会老龄化程度的不断加深,老人出游人数也越来越多。据全国老龄办统计,国内游总人次中有两成是老年人。某旅行社在十一期间接待了大量的老年旅行团,旅行团人数的茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如下(阴影部分为损坏数据),估算该旅行社团的平均人数和频率分布直方图中的矩形的高分别为( )。A、 B、 C、 D、 4.从名大学毕业生中选人担任村长助理,则甲、乙至少有人入选,而丙没有入选的不同选法的种数为( )。A、 B、 C、 D、5.若直线与曲线和圆都相切,则的方程为( )。A、 B、 C、 D、6.已知函数()在区间上单调递增,将函数的图像向左平移个单位长度,再向下平移个单位长度,得到函数的图像,且当时,,则的取值范围是( )。A、 B、 C、 D、7.在棱长为的正方体中,是的中点,是上的动点,则三棱锥的外接球表面积的最小值为( )。A、 B、 C、 D、8.等轴双曲线是一种特殊的双曲线,特点是渐近线互相垂直且离心率为,()的图像是等轴双曲线,设双曲线的焦点为、,点为坐标原点,则的面积为( )。A、 B、 C、 D、二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,有选错的得0分,部分选对的得2分。9.下列说法错误的是( )。A、“平面向量与的夹角是锐角”的充分必要条件是“”B、函数“的最小正周期为”是“”的必要不充分条件C、命题“,”的否定是“,”D、关于的不等式的解集为,则实数的取值范围是10.“天干地支纪年法”(也叫农历)源于中国,中国自古便有十天干与十二地支。十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支:子、丑、寅、卯、辰、巳、午、未、申、西、戌、亥。天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”……依此类推,排列到“癸西”后,天干回到“甲”重新开始,即“甲戌”“乙亥”,之后地支回到“子”重新开始,即“丙子”……依此类推。年为“天干地支纪年法”的辛丑年,为了推算公元年,(为不小于的正整数)所在的农历年份,我们定义数列:的余数,若,则公元第年为辛丑年;若,则公元第年为壬寅年,依次类推,则( )。A、 B、, C、 D、 11.已知、是抛物线:上异于坐标原点的两个动点,且以为直径的圆过点,则下列说法正确的是( )。A、抛物线的准线为 B、直线的斜率为 C、 D、直线过定点12.定义在上的函数满足:,,则下列说法正确的是( )。A、在处取得极小值,极小值为 B、只有一个零点C、若在上恒成立,则 D、三、填空题:本题共4小题,每小题5分,共20分。13.展开式中的常数项为 。14.已知为等差数列,,,的前项和为,则使得达到最大值时是 。15.已知定义在上的函数满足:①,②在上为增函数;若时,成立,则实数的取值范围为 。16.如图所示,在平面四边形中,,,,,在中,角、、的对边分别为、、,若,则的面积为 。 四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(本小题满分10分)设等差数列的前项和为,若,。(1)求数列的通项公式;(2)设,若的前项和为,证明:。 18.(本小题满分12分)设向量,向量,且,其中、是的两个内角。(1)求的取值范围;(2)试确定的取值范围。 19.(本小题满分12分)年抗击新冠肺炎武汉封城期间,某公司的产品因符合抗疫要求(全部用统一规格的包装箱包装且有物流配送支持)能继续直销武汉。为了把握准确的需求信息,他们使用大数据统计了武汉年末近天内每天此产品的售货量(单位:箱)如下表所示:销售量(箱)天数统计分析发现服从正态分布。(1)画出售货量的频率分布直方图,并求出的值;(2)估计该公司一个月(天)内售货量在区间内的天数(结果保留整数);(3)为鼓励分销商,该公司出台了两种不同的促销方案:方案一:直接返现,按每日售货量三级返现:时,返现元;时,返现元;时,返现元;方案二:通过抽奖返现,每日售货量低于时有一次抽奖机会;每日售货量不低于时有两次抽奖机会,每次抽奖获得奖金元的概率为,获得奖金元的概率为。据你分析,分销商应采用哪种方案?请说明理由。附:若,则,。 20.(本小题满分12分)如图所示,在三棱锥中,平面,,、分别为线段、的中点,为的中点,,平面平面。(1)求的长;(2)若,求二面角的余弦值。 21.(本小题满分12分)已知椭圆:()的右焦点为,离心率为,直线:()与椭圆交于不同两点、,直线、分别交轴于、两点。(1)求椭圆的标准方程;(2)求证:。 22.(本小题满分12分)已知函数(其中是自然对数的底数),函数()。(1)函数是否存在极值点?若存在,请求出极值点;若不存在,请说明理由;(2)当时,均有成立,求实数的取值范围。
相关试卷
这是一份2023年高考数学必做模拟卷—新高考Ⅱ考纲卷10,文件包含2023年高考数学必做模拟卷新高考Ⅱ考纲卷10解析版docx、2023年高考数学必做模拟卷新高考Ⅱ考纲卷10原卷版docx、2023年高考数学必做模拟卷新高考Ⅱ考纲卷10答案docx等3份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份2023年高考数学必做模拟卷—新高考Ⅱ考纲卷08,文件包含2023年高考数学必做模拟卷新高考Ⅱ考纲卷08解析版docx、2023年高考数学必做模拟卷新高考Ⅱ考纲卷08原卷版docx、2023年高考数学必做模拟卷新高考Ⅱ考纲卷08答案docx等3份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
这是一份2023年高考数学必做模拟卷—新高考Ⅱ考纲卷06,文件包含2023年高考数学必做模拟卷新高考Ⅱ考纲卷06解析版docx、2023年高考数学必做模拟卷新高考Ⅱ考纲卷06答案docx、2023年高考数学必做模拟卷新高考Ⅱ考纲卷06原卷版docx等3份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。