搜索
    上传资料 赚现金
    新高考数学一轮复习课件 第3章 §3.5 利用导数研究恒(能)成立问题
    立即下载
    加入资料篮
    新高考数学一轮复习课件  第3章 §3.5   利用导数研究恒(能)成立问题01
    新高考数学一轮复习课件  第3章 §3.5   利用导数研究恒(能)成立问题02
    新高考数学一轮复习课件  第3章 §3.5   利用导数研究恒(能)成立问题03
    新高考数学一轮复习课件  第3章 §3.5   利用导数研究恒(能)成立问题04
    新高考数学一轮复习课件  第3章 §3.5   利用导数研究恒(能)成立问题05
    新高考数学一轮复习课件  第3章 §3.5   利用导数研究恒(能)成立问题06
    新高考数学一轮复习课件  第3章 §3.5   利用导数研究恒(能)成立问题07
    新高考数学一轮复习课件  第3章 §3.5   利用导数研究恒(能)成立问题08
    还剩52页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习课件 第3章 §3.5 利用导数研究恒(能)成立问题

    展开
    这是一份新高考数学一轮复习课件 第3章 §3.5 利用导数研究恒(能)成立问题,共60页。PPT课件主要包含了高考数学一轮复习策略,第三章,分离参数求参数范围,综上知0≤m≤e,等价转化求参数范围,又h′1=0,课时精练等内容,欢迎下载使用。

    1、揣摩例题。课本上和老师讲解的例题,一般都具有一定的典型性和代表性。要认真研究,深刻理解,要透过“样板”,学会通过逻辑思维,灵活运用所学知识去分析问题和解决问题,特别是要学习分析问题的思路、解决问题的方法,并能总结出解题的规律。 2、精练习题。复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。 3、加强审题的规范性。每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。 4、重视错题。“错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
    §3.5 利用导数研究恒(能)成立问题
    例1 (2022·北京模拟)已知函数f(x)=(x-2)ex- ax2+ax(a∈R).(1)当a=0时,求曲线y=f(x)在点(0,f(0))处的切线方程;
    当a=0时,f(x)=(x-2)ex,f(0)=(0-2)e0=-2,f′(x)=(x-1)ex,k=f′(0)=(0-1)e0=-1,所以切线方程为y+2=-(x-0),即x+y+2=0.
    (2)当x≥2时,f(x)≥0恒成立,求a的取值范围.
    方法一 当x≥2时,f(x)≥0恒成立,等价于当x≥2时,(x-2)ex- ax2+ax≥0恒成立.
    当x=2时,0·a≤0,所以a∈R.
    因为x>2,所以g′(x)>0,所以g(x)在区间(2,+∞)上单调递增.所以g(x)>g(2)=e2,所以a≤e2. 综上所述,a的取值范围是(-∞,e2].方法二 f′(x)=(x-1)(ex-a),①当a≤0时,因为x≥2,所以x-1>0,ex-a>0,所以f′(x)>0,
    则f(x)在[2,+∞)上单调递增,f(x)≥f(2)=0成立.②当0e2时,在区间(2,ln a)上,f′(x)<0;在区间(ln a,+∞)上,f′(x)>0,所以f(x)在(2,ln a)上单调递减,在(ln a,+∞)上单调递增,f(x)≥0不恒成立,不符合题意.综上所述,a的取值范围是(-∞,e2].
    (2022·重庆模拟)已知函数f(x)= -(m+1)x+mln x+m,f′(x)为函数f(x)的导函数.(1)讨论f(x)的单调性;
    ①当m≤0,x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.②当00,f(x)单调递增;当x∈(m,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.③当m=1,x∈(0,+∞)时,f′(x)≥0,f(x)单调递增.④当m>1,x∈(0,1)时,f′(x)>0,f(x)单调递增;
    当x∈(1,m)时,f′(x)<0,f(x)单调递减;当x∈(m,+∞)时,f′(x)>0,f(x)单调递增.
    (2)若xf′(x)-f(x)≥0恒成立,求m的取值范围.
    由题意知xf′(x)-f(x)≥0恒成立,
    当0分离参数法解决恒(能)成立问题的策略(1)分离变量.构造函数,直接把问题转化为函数的最值问题.(2)a≥f(x)恒成立⇔a≥f(x)max;a≤f(x)恒成立⇔a≤f(x)min;a≥f(x)能成立⇔a≥f(x)min;a≤f(x)能成立⇔a≤f(x)max.
    跟踪训练1 已知函数f(x)=xln x(x>0).(1)求函数f(x)的极值;
    由f(x)=xln x,得f′(x)=1+ln x,
    (2)若存在x∈(0,+∞),使得f(x)≤成立,求实数m的最小值.
    由g′(x)>0,得x>1;由g′(x)<0,得0例2 已知函数f(x)=ex-1-ax+ln x(a∈R).(1)若函数f(x)在x=1处的切线与直线3x-y=0平行,求a的值;
    ∴f′(1)=2-a=3,∴a=-1,经检验a=-1满足题意,∴a=-1,
    (2)若不等式f(x)≥ln x-a+1对一切x∈[1,+∞)恒成立,求实数a的取值范围.
    f(x)≥ln x-a+1可化为ex-1-ax+a-1≥0,x>0,令φ(x)=ex-1-ax+a-1,则当x∈[1,+∞)时,φ(x)min≥0,∵φ′(x)=ex-1-a,
    ∴φ(x)在[1,+∞)上单调递增,
    ∴φ(x)min=φ(1)=1-a+a-1=0≥0恒成立,
    当x∈(0,ln a+1)时,φ′(x)<0,当x∈(ln a+1,+∞)时,φ′(x)>0,∴φ(x)在(0,ln a+1)上单调递减,在(ln a+1,+∞)上单调递增.
    φ(x)min=φ(1)=0≥0恒成立,
    当ln a+1>1,即a>1时,φ(x)在[1,ln a+1)上单调递减,在(ln a+1,+∞)上单调递增,∴φ(x)min=φ(ln a+1)<φ(1)=0与φ(x)≥0矛盾.故a>1不符合题意.综上,实数a的取值范围为(-∞,1].
    (2022·衡阳模拟)已知函数f(x)=-ax2+ln x(a∈R).(1)讨论f(x)的单调性﹔
    函数f(x)的定义域为(0,+∞),
    当a≤0时,f′(x)>0,则f(x)在(0,+∞)上单调递增,
    (2)若存在x∈(1,+∞),f(x)>-a,求a的取值范围.
    由f(x)>-a,得a(x2-1)-ln x<0,x∈(1,+∞),-ln x<0,x2-1>0,当a≤0时,a(x2-1)-ln x<0,满足题意;
    根据不等式恒成立构造函数转化成求函数的最值问题,一般需讨论参数范围,借助函数单调性求解.
    跟踪训练2 已知函数f(x)=x2-(a+2)x+aln x.(1)当a>2时,求函数f(x)的单调区间;
    (2)若存在x∈[1,+∞),使f(x)∵存在x∈[1,+∞)使f(x)f(x)min.由(1)可得,①当a>2时,
    ∴φ(t)在(1,2)上单调递增,在(2,+∞)上单调递减,
    ∴φ(t)max=φ(2)=ln 2-1<2恒成立,即当a>2时,不等式恒成立;
    ②当a≤2时,f(x)在x∈[1,+∞)上单调递增,
    双变量的恒(能)成立问题
    例3 设f(x)= +xln x,g(x)=x3-x2-3.(1)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;
    存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,等价于[g(x1)-g(x2)]max≥M成立.g′(x)=3x2-2x=x(3x-2),
    又g(0)=-3,g(2)=1,∴当x∈[0,2]时,g(x)max=g(2)=1,
    ∴满足条件的最大整数M为4.
    (2)如果对于任意的s,t∈ ,都有f(s)≥g(t)成立,求实数a的取值范围.
    则f(x)min≥g(x)max.
    即a≥x-x2ln x恒成立.
    ∴h′(x)=1-2xln x-x,令φ(x)=1-2xln x-x,∴φ′(x)=-3-2ln x<0,
    当x∈[1,2]时,h′(x)≤0,
    ∴h(x)max=h(1)=1,故a≥1.∴实数a的取值范围是[1,+∞).
    已知函数f(x)= (x∈R),a为正实数.(1)求函数f(x)的单调区间;
    因为a>0,所以令f′(x)>0,得03.所以f(x)的单调递增区间为(0,3),单调递减区间为(-∞,0)和(3,+∞).
    (2)若∀x1,x2∈[0,4],不等式|f(x1)-f(x2)|<1恒成立,求实数a的取值范围.
    由(1)知f(x)在(0,3)上单调递增,在(3,4)上单调递减,
    又f(0)=-a<0,f(4)=11ae-4>0,所以f(0)“双变量”的恒(能)成立问题一定要正确理解其实质,深刻挖掘内含条件,进行等价变换,常见的等价转换有(1)∀x1,x2∈D,f(x1)>g(x2)⇔f(x)min>g(x)max.(2)∀x1∈D1,∃x2∈D2,f(x1)>g(x2)⇔f(x)min>g(x)min.(3)∃x1∈D1,∀x2∈D2,f(x1)>g(x2)⇔f(x)max>g(x)max.
    跟踪训练3 设f(x)=xex,g(x)= x2+x.(1)令F(x)=f(x)+g(x),求F(x)的最小值;
    因为F(x)=f(x)+g(x)
    所以F′(x)=(x+1)(ex+1),令F′(x)>0,解得x>-1,令F′(x)<0,解得x<-1,所以F(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,
    (2)若任意x1,x2∈[-1,+∞),且x1>x2,有m[f(x1)-f(x2)]>g(x1)-g(x2)恒成立,求实数m的取值范围.
    因为任意x1,x2∈[-1,+∞),且x1>x2,有m[f(x1)-f(x2)]>g(x1)-g(x2)恒成立,所以mf(x1)-g(x1)>mf(x2)-g(x2)恒成立,
    即只需h(x)在[-1,+∞)上单调递增即可.故h′(x)=(x+1)(mex-1)≥0在[-1,+∞)上恒成立,
    即实数m的取值范围是[e,+∞).
    KESHIJINGLIAN
    1.(2022·大同模拟)已知函数f(x)=x(mex-1).(1)当m=1时,求函数f(x)的图象在(1,f(1))处的切线方程;
    当m=1时,f(x)=x(ex-1),则f(1)=e-1,由f′(x)=ex-1+xex可得,f′(1)=2e-1.所以函数f(x)的图象在(1,f(1))处的切线方程为y-(e-1)=(2e-1)(x-1),即(2e-1)x-y-e=0.
    (2)当x>0时,f(x)≥x2-2x,求实数m的取值范围.
    由x(mex-1)≥x2-2x及x>0,
    当x∈(0,2)时,g′(x)>0;当x∈(2,+∞)时,g′(x)<0,
    所以g(x)在(0,2)上单调递增,在(2,+∞)上单调递减,所以x=2是g(x)的极大值点,也是g(x)的最大值点,
    2.(2022·长春模拟)设函数f(x)=x2-(a+2)x+aln x(a∈R). (1)若x=3是f(x)的极值点,求f(x)的单调区间;
    所以a=6,经检验符合条件,
    令f′(x)>0,有03;令f′(x)<0,有1(2)若f(x)≥1恒成立,求a的取值范围.
    由题意f(x)≥1⇔f(x)min≥1,当a≤0时,令f′(x)>0,有x>1;令f′(x)<0,有0存在f(1)=-a-1<0;
    可知a>0时,f(x)≥1不恒成立.综上,a≤-2.
    3.(2022·沈阳模拟)已知f(x)是定义在[-1,1]上的奇函数,当x>0时,f(x)=x2+sin x,g(x)是定义在(0,+∞)上的函数,且g(x)=ax+ -2(a>0).(1)求函数f(x)的解析式;
    设x<0,则-x>0,所以f(-x)=x2-sin x,又f(x)是奇函数,所以f(-x)=-f(x),所以f(x)=-f(-x)=-x2+sin x,又f(0)=0,
    (2)若对于∀x1∈[-1,1],∃x2∈(0,+∞),使得f(x1)>g(x2)成立,求实数a的取值范围.
    由题意得f(x)min>g(x)min.当x∈[0,1]时,f′(x)=2x+cs x>0,所以f(x)在[0,1]上单调递增,所以f(x)min=f(0)=0;当x∈[-1,0)时,f′(x)=-2x+cs x>0,所以f(x)在[-1,0)上单调递增,所以f(x)min=f(-1)=-1-sin 1<0,
    所以f(x)min=-1-sin 1.对于g(x),因为a>0,x>0,
    4.(2022·昆明联考)已知函数f(x)=eax-x.(1)若曲线y=f(x)在点(0,f(0))处切线的斜率为1,求f(x)的单调区间;
    f′(x)=aeax-1,则f′(0)=a-1=1,即a=2.
    (2)若不等式f(x)≥eaxln x-ax2对x∈(0,e]恒成立,求a的取值范围.
    由f(x)≥eaxln x-ax2,x∈(0,e],
    ∴当x∈(0,e]时,g′(x)>0,则g(x)在(0,e]上单调递增,∴当x∈(0,e]时,g(eax)≥g(x)等价于eax≥x,
    相关课件

    第三章 §3.5 利用导数研究恒(能)成立问题(教师版+学生课时教案+课时作业+配套PPT): 这是一份第三章 §3.5 利用导数研究恒(能)成立问题(教师版+学生课时教案+课时作业+配套PPT),文件包含第三章§35利用导数研究恒能成立问题课时配套pptpptx、第三章§35利用导数研究恒能成立问题学生课时教案docx、第三章§35利用导数研究恒能成立问题教师用书docx、第三章§35利用导数研究恒能成立问题课时课后练习docx等4份课件配套教学资源,其中PPT共60页, 欢迎下载使用。

    新高考数学一轮复习讲练测课件第3章§3.5利用导数研究恒(能)成立问题 (含解析): 这是一份新高考数学一轮复习讲练测课件第3章§3.5利用导数研究恒(能)成立问题 (含解析),共60页。PPT课件主要包含了考试要求,题型一,分离参数求参数范围,思维升华,题型二,等价转化求参数范围,题型三,课时精练,基础保分练,综合提升练等内容,欢迎下载使用。

    2024年高考数学一轮复习专题一第2课时利用导数研究恒(能)成立问题课件: 这是一份2024年高考数学一轮复习专题一第2课时利用导数研究恒(能)成立问题课件,共27页。PPT课件主要包含了反思感悟,互动探究,垂直求a的值,题型二存在成立问题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新高考数学一轮复习课件 第3章 §3.5 利用导数研究恒(能)成立问题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map