北师大版数学八年级上册应用二元一次方程组(基础)知识讲解 (含答案)
展开应用二元一次方程组(基础)知识讲解
【学习目标】
1.以含有多个未知数的实际问题为背景,经历“分析数量关系,设未知数,列方程组,解方程组和检验结果”的过程,体会方程组是刻画现实世界中含有多个未知数问题的数学模型;
2.熟练掌握用方程组解决鸡兔同笼,增收节支,里程碑上的数等实际问题.
【要点梳理】
要点一、常见的一些等量关系
1.和差倍分问题:
增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量.
2.增收节支问题:
(1)增长(递减)率公式:
原来的量×(1+增长率)=后来的量; 原来的量×(1-递减率)=后来的量;
(2)利润公式:
利润=总收入-总支出 ;利润=售价-成本(或进价)=成本×利润率
;标价=成本(或进价)×(1+利润率)
(3)银行利率公式:
利息=本金×利率×期数.
本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数) .
年利率=月利率×12.
月利率=年利率×.
要点诠释:
增收节支问题常常借助列表分析问题中所蕴涵的数量关系,这种方法清晰明了,能够充分突出解题过程.
3.行程问题:
速度×时间=路程.
顺水速度=静水速度+水流速度.
逆水速度=静水速度-水流速度.
4.数字问题:已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为10b+a.
要点二、实际问题与二元一次方程组
1.列方程组解应用题的基本思想
列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.
2.列二元一次方程组解应用题的一般步骤:
设:用两个字母表示问题中的两个未知数;
列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);
解:解方程组,求出未知数的值;
验:检验求得的值是否正确和符合实际情形;
答:写出答案.
要点诠释:
(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;
(2)“设”、“答”两步,都要写清单位名称;
(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.
【典型例题】
类型一、鸡兔同笼问题
1. (2020•茂名)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为( )
A. B.
C. D.
【思路点拨】设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可.
【答案与解析】
解:设有x匹大马,y匹小马,根据题意得
,
故选C
【总结升华】本题考查了二元一次方程的应用,利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.
举一反三:
【变式】根据图中所给出的信息,求出每个篮球和每个羽毛球的价格.
【答案】
解:设每个篮球元,每个羽毛球元.根据题意列方程组:
解得
答:每个篮球20元,每个羽毛球2元.
类型二、增收节支问题
2.(2020•北京)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.
《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”
译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”
设每头牛值金x两,每只羊值金y两,可列方程组为 .
【思路点拨】由实际问题抽象出二元一次方程组.菁优网版权所有
根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.
【答案与解析】
解:根据题意得:.
【总结升华】考查了由实际问题抽象出二元一次方程组的能力,解决本题的关键是找到题目中所存在的等量关系.
举一反三
【变式】小明想开一家时尚G点专卖店,开店前他到其它专卖店调查价格.他看中了一套新款春装,成本共500元,专卖店店员告诉他在上市时通常将上衣按50﹪的利润定价,裤子按40﹪的利润定价.由于新年将至,节日优惠,在实际出售时,为吸引顾客,两件服装均按9折出售,这样专卖店共获利157元,小明觉得上衣款式好,销路会好些,想问问上衣的成本价,但店员有事走开了,你能帮助他吗?
【答案】
上衣成本+裤子成本=500元
上衣利润+裤子利润=157元
分析:设上衣的成本价为x元,裤子的成本价为y元:
| 成本(元) | 实际售价(元) | 利润(元) |
上衣
| x |
|
|
裤子
| y |
|
|
解:设上衣的成本价为x元,裤子的成本价为y元,则上衣利润为 元,
裤子利润为[0.9(1+40%)y-y]元,依题意得
整理得:
②-① ×26,得9x=2700,
∴x =300.
把其代入①,得y=500-300=200
答:上衣成本300元,裤子成本200元.
3. 蔬菜种植专业户徐先生要办一个小型蔬菜加工厂,分别向银行申请了甲,乙两种贷款,共13万元,徐先生每年须付利息6075元,已知甲种贷款的年利率为6%,乙种贷款的年利率为3.5%,则甲,乙两种贷款分别是多少元?
【思路点拨】本题的等量关系:甲种贷款+乙种贷款=13万元;甲种贷款的年利息+乙种贷款的年利息=6075元.
【答案与解析】
解:设甲,乙两种贷款分别是x,y元,根据题意得:
解得:
答:甲,乙两种贷款分别是61000元和69000元.
【总结升华】利息=贷款金额×利息率.
类型三、里程碑上的数(数字问题)
4.有一个两位数,个位上的数比十位上的数大5,如果把这两个数的位置对换,那么所得的新数与原数的和是143,求这个两位数.
【思路点拨】本题中的等量关系:①个位上的数-十位上的数=5;②原数+新数=143.
【答案与解析】
解:设原来的两位数中,个位上的数字为x,十位上的数字为y.则原数为10y+x,把这两个数的位置对换后,所得的新数为10x+y,根据题意,得:
,解方程组,得.
故这个两位数为10y+x=10×4+9=49.
答:这个两位数为49.
【总结升华】对于两位数、三位数的数字问题,关键是明确它们与各数位上的数字之间的关系:两位数=十位数字×10+个位数字;三位数=百位数字×100+十位数字×10+个位数字.
【变式】(2020•黑龙江)为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案( )
A.4 B.3 C.2 D.1
【答案】解:设5人一组的有x个,6人一组的有y个,根据题意可得:5x+6y=40,
当x=1,则y=(不合题意);
当x=2,则y=5;
当x=3,则y=(不合题意);
当x=4,则y=(不合题意);
当x=5,则y=(不合题意);
当x=6,则y=(不合题意);
当x=7,则y=(不合题意);
当x=8,则y=0;
所以有2种分组方案.故选:C.
类型四、行程问题
5. A、B两地相距480千米,一列慢车从A地开出,一列快车从B地开出.
(1)如果两车同时开出相向而行,那么3小时后相遇;如果两车同时开出同向(沿BA方向)而行,那么快车12小时可追上慢车,求快车与慢车的速度各是多少?
(2)如果慢车先开出l小时,两车相向而行,那么快车开出几小时可与慢车相遇?
【思路点拨】这两个问题均可以利用路程、速度和时间之间的关系列方程(组)求解.
(1)“同时开出相向而行”可用下图表示.
“同时开出同向而行”可用下图表示.
(2)慢车先开出1小时,两车相向而行,仿照(1)用示意图表示出来,并用等式表示出来.
【答案与解析】
解:(1)设快车和慢车的速度分别为x千米/时和y千米/时.
根据题意,得,
解得
答:快车和慢车的速度分别为100千米/时和60千米/时.
(2)设快车开出x小时可与慢车相遇,则此时慢车开出(x+1)小时,
根据题意,得60(x+1)+100x=480.
解得.
答:快车开出小时两车相遇.
【总结升华】比较复杂的行程问题可以通过画“线条”图帮助分析,求解时应分清相遇、追及、相向、同向等关键词.