模拟卷03——【新高考专用】2023年高考数学考前冲刺模拟卷(含答案)
展开数学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,,则( )
A.B.C.D.
2.复数在复平面内对应的点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
3.大约公元前300年,欧几里得在他所著《几何原本》中证明了算术基本定理:每一个比1大的数(每个比1大的正整数)要么本身是一个素数,要么可以写成一系列素数的乘积,如果不考虑这些素数在乘积中的顺序,那么写出来的形式是唯一的,即任何一个大于1的自然数(不为素数)能唯一地写成(其中是素数,是正整数,,),将上式称为自然数的标准分解式,且的标准分解式中有个素数.从120的标准分解式中任取3个素数,则一共可以组成不同的三位数的个数为( )
A.6B.13C.19D.60
4.已知函数的部分图象如图所示,则下列可能是的解析式的是( )
A. B. C. D.
5.已知多项式,则( )
A.11B.74 C.86 D.
6.已知,则( )
A. B. C. D.
7.勒洛三角形是一种典型的定宽曲线,以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形就是勒洛三角形.在如图所示的勒洛三角形中,已知,为弧上的点且,则的值为( )
A. B. C. D.
8.在平面直角坐标系xOy中,x轴正半轴上从左至右四点A、B、C、D横坐标依次为a-c、a、a+c、2a,y轴上点M、N纵坐标分别为m、-2m(m>0),设满足的动点P的轨迹为曲线E,满的动点Q的轨迹为曲线F,当动点Q在y轴正半轴上时,DQ交曲线E于点P0(异于D),且OP0与BQ交点恰好在曲线F上,则a:c=( )
A. B. C. 2D. 3
二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对得5分,有选错得0分,部分选对得3分.
9.为推动学校体育运动发展,引导学生积极参与体育锻炼,增强健康管理意识,某校根据性别比例采用分层抽样方法随机抽取了120名男生和80名女生,调查并分别绘制出男、女生每天在校平均体育活动时间的频率分布直方图(如图所示),则( )
B.该校男生每天在校平均体育活动时间中位数的估计值为75
估计该校至少有一半学生每天在校平均体育活动时间超过一小时
D.估计该校每天在校平均体育活动时间不低于80分钟的学生中男、女生人数比例为
10.已知函数满足恒成立,且在上单调递增,则下列说法中正确的是( )
A.
B. 为偶函数
C. 若,则
D. 将图象上所有点的横坐标变为原来的2倍,可以得到的图象
11.甲袋中装有4个白球,2个红球和2个黑球,乙袋中装有3个白球,3个红球和2个黑球.先从甲袋中随机取出一球放入乙袋,再从乙袋中随机取出一球.用,,分别表示甲袋取出的球是白球、红球和黑球,用B表示乙袋取出的球是白球,则( )
A.,,两两互斥B.
C.与B是相互独立事件D.
12.已知抛物线上的两点,及抛物线上的动点,直线PA,PB的斜率分别为,,坐标轴原点记为O,下列结论正确的是( )
A.抛物线的准线方程为
B.三角形AOB为正三角形时,它的面积为
C.当为定值时,为定值
D.过三点,,的圆的周长大于
三.填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.
13.已知圆:与直线:,写出一个半径为,且与圆及直线都相切的圆的方程:______.
14.已知的非零数列前n项和为,若,则的值为____________.
15.柯西分布(Cauchydistributin)是一个数学期望不存在的连续型概率分布.记随机变量服从柯西分布为,其中当,时的特例称为标准柯西分布,其概率密度函数为.已知,,,则________.
16.已知三棱锥体积为6,且.若该三棱锥的四个顶点都在球的球面上,则三棱锥的体积为__________.
解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.
17.已知正项等比数列的的前n项和为,且满足:,
(1)求数列的通项;
(2)已知数列满足,求数列的前n项和.
18.记锐角内角的对边分别为,且,且.
(1)求;
(2)将延长至D,使得,记的内切圆与边相切于点T,是否为定值?若是,求出该定值,若不是,请说明理由.
19.为了促进地方经济的快速发展,国家鼓励地方政府实行积极灵活的人才引进政策,被引进的人才,可享受地方的福利待遇,发放高标准的安家补贴费和生活津贴.某市政府从本年度的1月份开始进行人才招聘工作,参加报名的人员通过笔试和面试两个环节的审查后,符合一定标准的人员才能被录用.现对该市1~4月份的报名人员数和录用人才数(单位:千人)进行统计,得到如下表格.
(1)求出y关于x的经验回归方程;
(2)假设该市对被录用的人才每人发放2万元的生活津贴
(i)若该市5月份报名人员数为8000人,试估计该市对5月份招聘的人才需要发放的生活津贴的总金额;
(ii)假设在参加报名的人员中,小王和小李两人被录用的概率分别为,.若两人的生活津贴之和的均值不超过3万元,求的取值范围.
附:经验回归方程中,斜率和截距的最小二乘法估计公式分别为
20.如图,在直三棱柱中,,,且二面角为为45°.
(1)求棱AC的长;
(2)若D为棱的中点,求平面与平面夹角的正切值.
21.已知双曲线的离心率为2,左、右焦点分别为,,点与,构成的三角形的面积为2.
(1)求双曲线的方程;
(2)已知直线(,且)与双曲线交于,两点,点关于轴的对称点为,若点在直线上,试判断直线是否经过轴上的一个定点?若经过定点,求出定点的坐标;若不经过定点,请说明理由.
22.已知函数,.
(1)求的单调区间;
(2)求证:存在极小值;
(3)若的最小值等于,求的值.
月份
1月份
2月份
3月份
4月份
报名人员数/千人
5
7
录用人才数/千人
【2023届新高考数学考前模拟冲刺卷】 模拟冲刺仿真卷03 (新高考通用)原卷版: 这是一份【2023届新高考数学考前模拟冲刺卷】 模拟冲刺仿真卷03 (新高考通用)原卷版,共7页。
【2023届新高考数学考前模拟冲刺卷】 模拟冲刺仿真卷03 (新高考通用)解析版: 这是一份【2023届新高考数学考前模拟冲刺卷】 模拟冲刺仿真卷03 (新高考通用)解析版,共27页。
冲刺模拟试卷07-2023年高考数学考前高分冲刺模拟卷(新高考专用): 这是一份冲刺模拟试卷07-2023年高考数学考前高分冲刺模拟卷(新高考专用),文件包含冲刺模拟试卷07-2023年高考数学考前高分冲刺模拟卷新高考专用解析版docx、冲刺模拟试卷07-2023年高考数学考前高分冲刺模拟卷新高考专用参考答案docx、冲刺模拟试卷07-2023年高考数学考前高分冲刺模拟卷新高考专用考试版docx等3份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。