所属成套资源:新高考物理(人教版)一轮总复习
第十二章 电磁感应-4电磁感应中的动力学、能量、动量问题 高三物理一轮复习
展开
这是一份第十二章 电磁感应-4电磁感应中的动力学、能量、动量问题 高三物理一轮复习,文件包含第十二章电磁感应-4电磁感应中的动力学能量动量问题解析版docx、第十二章电磁感应-4电磁感应中的动力学能量动量问题原卷版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
姓名:_______________
第十二章
电磁感应
电磁感应中的动力学、能量、动量问题
目录
「电磁感应和动力学综合」 1
「电磁感应和能量综合」 6
「电磁感应和动量定理结合」 11
「电磁感应和动量守恒综合」 14
「电磁感应和动力学综合」
1.(多选)如图所示,质量为m=0.04 kg、边长l=0.4 m的正方形导体线框abcd放置在一光滑绝缘斜面上,线框用一平行斜面的细线系于O点,斜面倾角为θ=30°。线框的一半处磁场中,磁场的磁感应强度随时间变化关系为B=2+0.5t(T),方向垂直于斜面,已知线框电阻为R=0.5 Ω,重力加速度为g=10 m/s2。则( )
A.线框中的感应电流方向为abcda
B.t=0时,细线拉力大小F=0.2 N
C.线框中感应电流大小为I=80 mA
D.经过一段时间t,线框可能沿斜面向上运动
【答案】CD
【解析】
由于磁场的磁感应强度随时间变化关系为B=2+0.5t(T),即磁场增强,根据楞次定律可得感应电流方向为adcba,A错误;根据法拉第电磁感应定律可得E==S=0.5×0.4×0.2 V=0.04 V,则感应电流的大小为I== A=0.08 A=80 mA;t=0时刻,磁感应强度为B=2 T,根据共点力的平衡条件可得F+BIl=mgsin θ,解得F=mgsin θ-BIl=(0.4sin 30°-2×0.08×0.4)N=0.136 N,所以B错误,C正确;随着时间增大,磁感应强度逐渐增大,当安培力(方向沿斜面向上)大于重力沿斜面向下的分力时,线框沿斜面向上运动,D正确。
2.(多选)如图所示,光滑的“”形金属导体框竖直放置,质量为m的金属棒MN与框架接触良好.磁感应强度分别为B1、B2的有界匀强磁场方向相反,但均垂直于框架平面,分别处在abcd和cdef区域.现从图示位置由静止释放金属棒MN,当金属棒进入磁场B1区域后,恰好做匀速运动.以下说法中正确的是( )
A.若B2=B1,金属棒进入B2区域后将加速下滑
B.若B2=B1,金属棒进入B2区域后仍将保持匀速下滑
C.若B2B1,金属棒进入B2区域后可能先减速后匀速下滑
【答案】BCD
【解析】
若B2=B1,金属棒进入B2区域后,磁场反向,回路电流反向,故安培力不变,金属棒进入B2区域后仍将匀速下滑,A错,B对;若B2B1,金属棒进入B2区域后可能先减速后匀速下滑,故D对.
3.(多选)如图所示,U形光滑金属导轨与水平面成37°角倾斜放置,现将一金属杆垂直放置在导轨上且与两导轨接触良好,在与金属杆垂直且沿着导轨向上的外力F的作用下,金属杆从静止开始做匀加速直线运动.整个装置处于垂直导轨平面向上的匀强磁场中,外力F的最小值为8 N,经过2 s金属杆运动到导轨最上端并离开导轨.已知U形金属导轨两轨道之间的距离为1 m,导轨电阻可忽略不计,金属杆的质量为1 kg、电阻为1 Ω,磁感应强度大小为1 T,重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.下列说法正确的是( )
A.拉力F是恒力
B.拉力F随时间t均匀增加
C.金属杆运动到导轨最上端时拉力F为12 N
D.金属杆运动的加速度大小为2 m/s2
【答案】BCD
【解析】
t时刻,金属杆的速度大小为v=at,产生的感应电动势为E=Blv,电路中的感应电流I=,金属杆所受的安培力大小为F安=BIl=,由牛顿第二定律可知F=ma+mgsin 37°+,可见F是t的一次函数,选项A错误,B正确;t=0时,F最小,代入数据可求得a=2 m/s2,t=2 s时,F=12 N,选项C、D正确.
4.(2022·重庆模拟)如图甲,间距为L的光滑导轨水平放置在竖直向下的匀强磁场中,磁感应强度为B,轨道左侧连接一定值电阻R,垂直导轨的导体棒ab在水平外力F作用下沿导轨运动,F随t变化的规律如图乙。在0~t0时间内,棒从静止开始做匀加速直线运动。乙图中t0、F1、F2为已知,棒接入电路的电阻为R,轨道的电阻不计。则下列说法正确的是( )
甲 乙
A.在t0以后,导体棒一直做匀速直线运动
B.导体棒最后达到的最大速度大小为
C.在0~t0时间内,导体棒的加速度大小为
D.在0~t0时间内,通过导体棒横截面的电量为
【答案】D
【解析】
因在0~t0时间内棒做匀加速直线运动,故在t0时刻F2大于棒所受的安培力,在t0以后,外力保持F2不变,安培力逐渐变大,导体棒做加速度越来越小的加速运动,当加速度a=0,即导体棒所受安培力与外力F2相等后,导体棒做匀速直线运动,故A错误;根据平衡条件可得FA=F2,而FA=BIL=,解得vm=,故B错误;设在0~t0时间内导体棒的加速度为a,导体棒的质量为m,t0时刻导体棒的速度为v,通过导体棒横截面的电荷量为q,则有:a= ①,F2-=ma②,F1=ma③,由①②③解得:a=,故C错误;根据电荷量的公式可得q=④,而ΔΦ=BΔS=BLt0⑤,由②③④⑤解得:q=,故D正确。
5.(多选)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直.ab、dc足够长,整个金属框电阻可忽略.一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行.经过一段时间后( )
A.金属框的速度大小趋于恒定值
B.金属框的加速度大小趋于恒定值
C.导体棒所受安培力的大小趋于恒定值
D.导体棒到金属框bc边的距离趋于恒定值
【答案】BC
【解析】
当金属框在恒力F作用下向右加速运动时,bc边产生从c向b的感应电流i,金属框的加速度大小为a1,则有F-Bil=Ma1;MN中感应电流从M流向N,MN在安培力作用下向右加速运动,加速度大小为a2,则有Bil=ma2,当金属框和MN都运动后,金属框速度为v1,MN速度为v2,则电路中的感应电流为i=,感应电流从0开始增大,则a2从零开始增加,a1从开始减小,加速度差值减小.当a1=a2时,得F=(M+m)a,a=恒定,由F安=ma可知,安培力不再变化,则感应电流不再变化,据i=知金属框与MN的速度差保持不变,v-t图像如图所示
故A错误,B、C正确;MN与金属框的速度差不变,但MN的速度小于金属框的速度,则MN到金属框bc边的距离越来越大,故D错误.
6.如图所示,空间存在B=0.5 T、方向竖直向下的匀强磁场,MN、PQ是水平放置的平行长直导轨,其间距L=0.2 m,电阻R=0.3 Ω接在导轨一端,ab是跨接在导轨上质量m=0.1 kg、接入电路的电阻r=0.1 Ω的导体棒,已知导体棒和导轨间的动摩擦因数为0.2.从零时刻开始,对ab棒施加一个大小为F=0.45 N、方向水平向左的恒定拉力,使其从静止开始沿导轨滑动,过程中棒始终保持与导轨垂直且接触良好,求:(g=10 m/s2)
(1)导体棒所能达到的最大速度;
(2)试定性画出导体棒运动的速度-时间图象.
【答案】(1)10 m/s;(2)见解析图
【解析】
(1)导体棒切割磁感线运动,产生的感应电动势:E=BLv①
回路中的感应电流I=②
导体棒受到的安培力F安=BIL③
导体棒运动过程中受到拉力F、安培力F安和摩擦力Ff的作用,根据牛顿第二定律:
F-μmg-F安=ma④
由①②③④得:F-μmg-=ma⑤
由⑤可知,随着速度的增大,安培力增大,加速度a减小,当加速度a减小到0时,速度达到最大.
此时有F-μmg-=0⑥
可得:vm==10 m/s⑦
(2)由(1)中分析可知,导体棒运动的速度-时间图象如图所示.
7.如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻,一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于斜面向下,导轨和金属杆的电阻可忽略,让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(重力加速度为g)
(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图;
(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小;
(3)求在下滑过程中,ab杆可以达到的速度最大值.
【答案】(1)见解析图;(2),gsin θ-;(3)
【解析】
(1)如图所示,ab杆受重力mg,方向竖直向下;支持力FN,方向垂直于导轨平面向上;安培力F安,方向沿导轨向上.
(2)当ab杆的速度大小为v时,感应电动势E=BLv,
此时电路中的电流I==
ab杆受到安培力F安=BIL=
根据牛顿第二定律,有
mgsin θ-F安=mgsin θ-=ma
则a=gsin θ-.
(3)当a=0时,ab杆有最大速度vm,即mgsin θ=,解得vm=.
「电磁感应和能量综合」
8.(多选)(2022·吉林模拟)如图,固定在水平桌面上的足够长的光滑金属导轨cd、eg处于方向竖直向下的匀强磁场中,金属杆ab与导轨接触良好,在两根导轨的端点d、e之间连接一电阻,其他部分电阻忽略不计,现用一水平向右的恒力F作用在金属杆ab上,使金属杆由静止开始向右沿导轨滑动,滑动中杆ab始终垂直于导轨,金属杆受到的安培力用F安表示,则下列说法正确的是( )
A.金属杆ab做匀加速直线运动
B.金属杆ab运动过程回路中有逆时针方向的电流
C.金属杆ab所受到的F安先不断增大,后保持不变
D.金属杆ab克服安培力做功的功率与时间的平方成正比
【答案】BC
【解析】
金属杆受到的安培力:F安=BIL=,金属杆在恒力作用下向右做加速运动,随速度v的增加,安培力变大,金属杆受到的合力减小,加速度减小,当安培力与恒力合力为零时金属杆做匀速直线运动,安培力保持不变,由此可知,金属杆向右先做加速度减小的加速运动,然后做匀速直线运动,故A错误,C正确;由右手定则或楞次定律可知,金属杆ab运动过程回路中有逆时针方向的感应电流,故B正确;安培力的功率:P安=F安v=,如果金属杆做初速度为零的匀加速直线运动,则v=at,金属杆克服安培力做功的功率与时间的平方成正比,由于金属杆先做加速度减小的加速运动后做匀速直线运动,因此金属杆ab克服安培力做功的功率与时间的平方不成正比,故D错误.
9.(多选)(2021·安徽一模)如图,水平固定的光滑U型金属导轨处于竖直向下的匀强磁场中,磁场的磁感应强度大小为B,导轨间距为L.一金属棒从导轨右端以大小为v的速度滑上导轨,金属棒最终停在导轨上,已知金属棒的质量为m、长度为L、电阻为R,金属棒与导轨始终接触良好,不计导轨的电阻,则( )
A.金属棒静止前做匀减速直线运动
B.金属棒刚滑上导轨时的加速度最大
C.金属棒速度为时的加速度是刚滑上导轨时加速度的
D.金属棒从滑上导轨到静止的过程中产生的热量为
【答案】BC
【解析】
导体棒切割磁感线产生的电动势为E=BLv,产生的电流为I==,则导体棒受水平向右的安培力,产生的加速度为a===,故导体棒做加速度减小且速度减小的变加速直线运动,而金属棒刚滑上轨道时速度最大,加速度最大,故A错误,B正确;金属棒的加速度a==,a∝v,当速度变为时,加速度变为原来的,故C正确;金属棒从滑上导轨到静止,仅受安培力作用,安培力做负功,则减少的动能转化为增加的电能,转变为热能,故由能量守恒定律有Q=mv2,故D错误.
10.如图所示,MN和PQ是电阻不计的平行金属导轨,其间距为L,导轨弯曲部分光滑,平直部分粗糙,二者平滑连接.右端接一个阻值为R的定值电阻.平直部分导轨左边区域有宽度为d、方向竖直向上、磁感应强度大小为B的匀强磁场.质量为m、接入电路的电阻也为R的金属棒从高度为h处由静止释放,到达磁场右边界处恰好停止.已知金属棒与平直部分导轨间的动摩擦因数为μ,金属棒与导轨垂直且接触良好,重力加速度为g.则金属棒穿过磁场区域的过程中( )
A.流过金属棒的最大电流为
B.通过金属棒的电荷量为
C.克服安培力所做的功为mgh
D.金属棒产生的焦耳热为mg(h-μd)
【答案】D
【解析】
金属棒沿弯曲部分下滑过程中,机械能守恒,由机械能守恒定律得:mgh=mv2,金属棒到达平直部分时的速度v=,金属棒到达平直部分后做减速运动,刚到达平直部分时的速度最大,最大感应电动势E=BLv,最大感应电流I==,故A错误;通过金属棒的感应电荷量q=Δt==,故B错误;金属棒在整个运动过程中,由动能定理得:mgh-W安-μmgd=0-0,克服安培力做功:W安=mgh-μmgd,故C错误;克服安培力做的功转化为焦耳热,定值电阻与金属棒的电阻相等,通过它们的电流相等,则金属棒产生的焦耳热:Q′=Q=W安=mg(h-μd),故D正确.
11.(多选)如图所示,竖直放置的形光滑导轨宽为L,矩形匀强磁场Ⅰ、Ⅱ的高和间距均为d,磁感应强度均为B.质量为m的水平金属杆由静止释放,进入磁场Ⅰ和Ⅱ时的速度相等.金属杆在导轨间的电阻为R,与导轨接触良好,其余电阻不计,重力加速度为g,则金属杆( )
A.刚进入磁场Ⅰ时加速度方向竖直向下
B.刚进入磁场Ⅰ时加速度方向竖直向上
C.穿过两磁场产生的总热量为4mgd
D.释放时距磁场Ⅰ上边界的高度h可能小于
【答案】BC
【解析】
由于金属杆进入两个磁场的速度相等,而穿出磁场后金属杆做加速度为g的匀加速运动,所以金属杆进入磁场时应做减速运动,加速度方向竖直向上,选项A错误,B正确;从进入磁场Ⅰ瞬间到进入磁场Ⅱ瞬间过程中,根据能量守恒,金属杆减小的机械能全部转化为焦耳热,所以Q1=mg·2d,所以穿过两个磁场过程中产生的热量为4mgd,选项C正确;若金属杆进入磁场做匀速运动,则-mg=0,得v=,因金属杆进入磁场做减速运动,则金属杆进入磁场的速度大于,根据h=得金属杆进入磁场的高度应大于=,选项D错误.
12.(2022·怀化模拟)如图甲所示,足够长、电阻不计的光滑平行金属导轨MN、PQ竖直放置,其宽度L=1 m,一匀强磁场垂直穿过导轨平面,导轨的上端M与P之间连接阻值为R=0.40 Ω的电阻,质量为m=0.01 kg、电阻为r=0.30 Ω的金属棒ab紧贴在导轨上.现使金属棒ab由静止开始下滑,下滑过程中ab始终保持水平,且与导轨接触良好,其下滑距离x与时间t的关系如图乙所示,图象中的OA段为曲线,AB段为直线,g=10 m/s2(忽略ab棒运动过程中对原磁场的影响),求:
(1)判断金属棒两端a、b的电势高低;
(2)磁感应强度B的大小;
(3)在金属棒ab开始运动的1.5 s内,电阻R上产生的热量.
【答案】(1)a端电势低,b端电势高;(2)0.1 T;(3)0.26 J
【解析】
(1)由右手定则可知,ab中的感应电流由a流向b,ab相当于电源,则b端电势高,a端电势低.
(2)由x-t图象得t=1.5 s时金属棒的速度为:
v== m/s=7 m/s
金属棒匀速运动时所受的安培力大小为:F=BIL
I=,E=BLv
联立得:F=
根据平衡条件得:F=mg
则有:mg=
代入数据解得:B=0.1 T
(3)金属棒ab在开始运动的1.5 s内,金属棒的重力势能减小,转化为金属棒的动能和电路的内能.设电路中产生的总焦耳热为Q
根据能量守恒定律得:mgx=mv2+Q
代入数据解得:Q=0.455 J
故R产生的热量为QR= Q=0.26 J
「电磁感应和动量定理结合」
13.(2022·湖北模拟)如图所示,在光滑的水平面上宽度为L的区域内,有竖直向下的匀强磁场.现有一个边长为a(a
相关试卷
这是一份备考2024届高考物理一轮复习讲义第十二章电磁感应专题二十一电磁感应中的动力学能量和动量问题题型3电磁感应中的动量问题,共9页。试卷主要包含了动量定理在电磁感应中的应用,动量守恒定律在电磁感应中的应用,5m/s等内容,欢迎下载使用。
这是一份备考2024届高考物理一轮复习讲义第十二章电磁感应专题二十一电磁感应中的动力学能量和动量问题题型2电磁感应中的能量问题,共5页。试卷主要包含了电磁感应中的能量转化,求解焦耳热的三种方法等内容,欢迎下载使用。
这是一份备考2024届高考物理一轮复习讲义第十二章电磁感应专题二十一电磁感应中的动力学能量和动量问题题型1电磁感应中的动力学问题,共6页。试卷主要包含了导体受力与运动的动态关系,两种运动状态,8V Q=0等内容,欢迎下载使用。