【全套】中考数学复习专题(知识梳理+含答案预测12 二次函数与动点的综合(无答案)
展开
这是一份【全套】中考数学复习专题(知识梳理+含答案预测12 二次函数与动点的综合(无答案),共14页。试卷主要包含了,点B在y轴的正半轴上,,,连接,过点作,交轴于点,连接等内容,欢迎下载使用。
预测12 二次函数与动点的综合二次函数与动点的综合是初中数学的重点内容,也是各地中考考查的一个热点!往往作为大家所说的压轴题,其难度和重要性不言而喻。1.从考点频率看,一个动点或两个动点与其它知识的综合运用是高频考点。2.从题型角度看,以解答题形式考查,分值约11分。 “动点型问题”的基本类型。① 特殊四边形为背景; ② 点动带线动得出动三角形; ③ 探究动三角形的问题(相似、等腰三角形、面积);④ 求直线、抛物线的解析式; ⑤ 探究存在性问题。 “动点型问题”的解决方法。 解决“动点型问题”的关键是动中求静,灵活运用“动中求静”,找到并运用不变的数、不变的量、不变的关系,建立函数关系及综合应用代数、几何知识解决问题。 【要点诠释】 根据题意灵活运用特殊三角形和四边形的相关性质、判定、定理知识确定二次函数关系式,通过二次函数解析式或函数图象判定“动点型问题”涉及的线与线关系、特殊三角形、四边形及相应的周长、面积,还有存在、最值等问题。 1.(湖南省益阳市2019年中考数学试题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值. 2.(吉林省长春市2019年中考数学试题)如图,在中,.点从点出发,沿向终点运动,同时点从点出发,沿射线运动,它们的速度均为每秒5个单位长度,点到达终点时,同时停止运动.当点不与点、重合时,过点作于点,连结,以为邻边作.设与重叠部分图形的面积为,点的运动时间为秒.(1)①的长为 ;②的长用含的代数式表示为 .(2)当为矩形时,求的值;(3)当与重叠部分图形为四边形时,求与之间的函数关系式;(4)当过点且平行于的直线经过一边中点时,直接写出的值. 3.(江苏省苏州市2019年中考数学试题)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=.如图①,动点M从点A出发,在矩形边上沿着的方向匀速运动(不包含点C).设动点M的运动时间为t(s),的面积为S(cm²),S与t的函数关系如图②所示:(1)直接写出动点M的运动速度为 ,BC的长度为 ;(2)如图③,动点M重新从点A出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N从点D出发,在矩形边上沿着的方向匀速运动,设动点N的运动速度为.已知两动点M、N经过时间在线段BC上相遇(不包含点C),动点M、N相遇后立即停止运动,记此时的面积为.①求动点N运动速度的取值范围;②试探究是否存在最大值.若存在,求出的最大值并确定运动速度时间的值;若不存在,请说明理由. [来源:学科网]4.(天津市2019年中考数学)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2..(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形,点C,O,D,E的对应点分别为.设,矩形与重叠部分的面积为S.①如图②,当矩形与重叠部分为五边形时,,分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当时,求t的取值范围(直接写出结果即可). 5.(2019年四川攀枝花中考)在平面直角坐标系中,已知,动点在的图像上运动(不与重合),连接,过点作,交轴于点,连接.(1)求线段长度取值范围;(2)试问:点运动过程中,是否问定值?如果是,求出该值;如果不是,请说明理由.(3)当为等腰三角形时,求点坐标. [来源:Zxxk.Com] 1.(广东省佛山市南海外国语学校2019-2020学年九年级下学期第一次月考数学试题)如图,已知抛物线经过点、和,垂直于轴,交抛物线于点,垂直于轴,垂足为,直线是该抛物线的对称轴,点是抛物线的顶点.(1)求出该二次函数的表达式及点的坐标;(2)若Rt△AOC沿轴向右平移,使其直角边与对称轴重合,再沿对称轴向上平移到点与点重合,得到,求此时与矩形重叠部分图形的面积;(3)若Rt△AOC沿轴向右平移个单位长度()得到,与重叠部分图形的面积记为,求与之间的函数表达式,并写出自变量的取值范围. 2.(2020年山西省3月中考数学模拟试题) 如图,二次函数y=x2+bx+c的图象过点B(0,1)和C(4,3)两点,与x轴交于点D、点E,过点B和点C的直线与x轴交于点A.(1)求二次函数的解析式;(2)在x轴上有一动点P,随着点P的移动,存在点P使△PBC是直角三角形,请你求出点P的坐标;(3)若动点P从A点出发,在x轴上沿x轴正方向以每秒2个单位速度运动,同时动点Q也从A点出发,以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似?若存在,直接写出a的值;若不存在,说明理由. 3.(2020年湖北省武汉市江汉区常青第一学校中考数学一模试题)已知:抛物线y=ax2﹣3(a﹣1)x+2a﹣6(a>0).(1)求证:抛物线与x轴有两个交点.(2)设抛物线与x轴的两个交点的横坐标分别为x1,x2(其中x1>x2).若t是关于a的函数、且t=ax2﹣x1,求这个函数的表达式;(3)若a=1,将抛物线向上平移一个单位后与x轴交于点A、B.平移后如图所示,过A作直线AC,分别交y的正半轴于点P和抛物线于点C,且OP=1.M是线段AC上一动点,求2MB+MC的最小值. 4.(2020年湖北省枣阳市太平一中模拟试题)如图已知点A (﹣2,4)和点B (1,0)都在抛物线y=mx2+2mx+n上.(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB′的交点为点C,试在x轴上找点D,使得以点B′、C、D为顶点的三角形与△ABC相似. 5.(2020年江西中考数学四模试题)在平面直角坐标系中,已知抛物线y=-x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.①若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;②取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由. 6.(广东2019年中考模拟数学试题)如图,在△ABC中,AB=AC,AD⊥AB点D,BC=10cm,AD=8cm,点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0)。(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值,若不存在,请说明理由。 7.(2019年河南省南阳市镇平县中考数学三模试卷)如图,抛物线y=﹣x2+bx+c经过A(0,3),C(2,n)两点,直线l:y=x+2过C点,且与y轴交于点B,抛物线上有一动点E,过点E作直线EF⊥x轴于点F,交直线BC于点D(1)求抛物线的解析式.(2)如图1,当点E在直线BC上方的抛物线上运动时,连接BE,BF,是否存在点E使直线BC将△BEF的面积分为2:3两部分?若存在,求出点E的坐标,若不存在说明理由;(3)如图2,若点E在y轴右侧的抛物线上运动,连接AE,当∠AED=∠ABC时,直接写出此时点E的坐标. 8.(2019-2020年湖北省模拟数学试卷)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围: ;(2)当PQ=3时,求t的值;[来源:学,科,网](3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由. [来源:Zxxk.Com] [来源:学科网ZXXK] 9.(2019-2020年四川模拟试题)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.①求抛物线的解析式.②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.
相关试卷
这是一份【全套】中考数学复习专题(知识梳理+含答案)预测11 二次函数与几何的综合,共45页。
这是一份【全套】中考数学复习专题(知识梳理+含答案)预测05 函数的综合,共23页。试卷主要包含了两点,与y轴相交于点C等内容,欢迎下载使用。
这是一份【全套】中考数学复习专题(知识梳理+含答案)预测04 圆的综合(解析版),共35页。试卷主要包含了【答案】见解析; 等内容,欢迎下载使用。