江苏省无锡市2023年七年级下学期期中数学试卷【含答案】
展开
这是一份江苏省无锡市2023年七年级下学期期中数学试卷【含答案】,共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
1.下列运算正确的是( )
A.a+2a=3a2B.a3·a2=a5C.(a4)2=a6D.a3+a4=a7
2.新冠病毒(2019-nCV)是一种新型病毒,它的直径约60~220nm,平均直径为100nm(纳米).1纳米=10-9米,那么100nm用科学记数法可以表示为( )
A.0.1×10-6米B.10×10-7 米C.1×10-6 米D.1×10-7米
3.下列哪组长度的三条线段能组成三角形?( )
A.1cm、2cm、4cmB.3cm、4cm、7cm
C.2cm、2cm、1cmD.5cm、3cm、2cm
4.如图,AB∥DE,BC∥EF,则∠E与∠B的关系一定成立的是( )
A.互余B.∠E=2∠BC.相等D.互补
5.如图,若要使AD∥BC,则可以添加条件( )
A.∠2=∠3B.∠B+∠BCD=180°
C.∠1=∠4D.∠1=∠3
6.下列各式从左边到右边的变形,是因式分解且分解正确的是( )
A.(a+1)(a-1)=a2-1B.a2-8a+16=(a-4)2
C.a2-2a+4=(a-2)2D.ab+ac+1=a(b+c)+1
7.用一个容量为2GB(1GB=210MB)的便携式优盘存储数码照片,若每张数码照片的文件大小都为16MB,则理论上可以存储的照片数是( )
A.210张B.28张C.27张D.26张
8.下列各式能用平方差公式计算的是( )
A.(-2x+y)(-2x-y)B.(2x+y)(x-2y)
C.(x-2y)(-x+2y)D.(-2x+y)(-x+2y)
9.我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子.现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒x斗,醑酒y斗,那么可列方程组为( )
A.B.
C.D.
10.对于a、b两数定义@的一种运算:a@b=(a▪b)a+b(其中等式右边的▪和+是通常意义下的乘法与加法),则下列结论:
①若a=1,b=-2,则a@b=-; ②若(-1)@x=1,则x=1;③a@b=b@a;④当a、b互为相反数时,a@b的值总是等于1.其中正确的是( )
A.①②④B.①③C.①③④D.②③
二、填空题
11.正五边形的内角和等于 度.
12.如图,已知∠ACP=115°,∠B=65°,则∠A= .
13.若是二元一次方程2x+3y=k的一个解,则k的值是 .
14.多项式分解因式时所提取的公因式是 .
15.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC'= .
16.若am=9,an=3,则am-n= .
17.已知关于x的代数式4x2+ax+9是完全平方式,则a= .
18.如图,将三角形纸片ABC沿EF折叠,使得A点落在BC上点D处,连接DE,DF,.设,,则α与β之间的数量关系是 .
三、解答题
19.计算或化简:
(1)
(2)a2a4+a8÷a2+(-2a2)3
(3)(a+1)2+a(3-a);
(4)(m+1)2(m﹣1)2.
20.因式分解:
(1)mx2﹣my2;
(2)2x2-8x+8.
21.先化简,再求值:(x-2)2+4(x-y)-(2y-1)2,其中x=4.85,y=2.575.
22.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.仅用无刻度的直尺完成下列作图.
(1)画出△ABC向右平移4个单位后的图形△A1B1C1(注意标上字母);
(2)画出△ABC的中线CD(注意标上字母);
(3)画出满足△QBC与△ABC面积相等的一个格点Q(与点A不重合).
23.如图,△ABC中,D为AC边上一点,过D作DE∥AB,交BC于E;F为AB边上一点,连接DF并延长,交CB的延长线于G,且∠DFA=∠A.
(1)求证:DE平分∠CDF;
(2)若∠C=80°,∠ABC=60°,求∠G的度数.
24.阅读以下材料:
若x2-4x+y2-10y+29=0,求x、y的值.
思路分析:一个方程求两个未知数显然不容易,考虑已知等式的特点,将其整理为两个完全平方式的和,利用其非负性转化成两个一元一次方程,进而求出x、y.
解:∵x2-4x+y2-10y+29=0,
∴(x2-4x+4)+(y2-10y+25)=0,
∴(x-2)2+(y-5)2 =0,
∴x=2,y=5.
请你根据上述阅读材料解决下列问题:
(1)若m2+2m+n2-6n+10=0,则m+n= ;
(2)请你说明:无论x、y取何值,代数式x2-4xy+5y2+2y+5的值一定是正数.
25.数形结合是解决数学问题的一种重要思想方法,借助图形的直观性,可以帮助理解数学问题.
(1)请写出图1,图2,图3阴影部分的面积分别能解释的数学公式.
图1: ;图2: ;图3: .
(2)其中,完全平方公式可以从“数”和“形”两个角度进行探究,并通过公式的变形或图形的转化可以解决很多数学问题.
例如:如图4,已知a+b=3,ab=1,求a2+b2的值.
方法一:从“数”的角度
解:∵a+b=3,
∴(a+b)2=9,即:a2+2ab+b2=9,
又∵ab=1
∴a2+b2=7.
方法二:从“形”的角度
解:∵a+b=3,
∴S大正方形=9,
又∵ab=1,
∴S2=S3=ab=1,
∴S1+S4=S大正方形﹣S2﹣S3=9﹣1﹣1=7.即a2+b2=7.
若(5﹣x)▪(x﹣1)=3,则(5﹣x)2+(x﹣1)2= ;
(3)如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设AB=10,两正方形的面积和S1+S2=72,求图中阴影部分面积.
26.引入概念1:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.
引入概念2:从不等边三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形.若分成的两个小三角形中一个是满足有两个角相等的三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.
(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”.
① ;② .
(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.请你说明CD是△ABC的等角分割线.
(3)在△ABC中,若∠A=40°,CD为△ABC的等角分割线,请你直接写出所有可能的∠B度数.
答案
1.B
2.D
3.C
4.D
5.C
6.B
7.C
8.A
9.A
10.B
11.540
12.50°
13.11
14.
15.5
16.3
17.±12
18.
19.(1)解:20+(-2)2-()-1
=1+4-3
=2;
(2)解:a2a4+a8÷a2+(-2a2)3
=a6+a6-8a6
=-6a6
(3)解:(a+1)2+a(3-a);
=a2+2a+1+3a-a2
=5a+1;
(4)解:(m+1)2(m﹣1)2.
=(m2﹣1)2
=m4﹣2m2+1
20.(1)解:mx2﹣my2=m(x2﹣y2)=m(x+y)(x﹣y);
(2)解:2x2-8x+8=2(x2-4x+4)=2(x﹣2)2.
21.解:原式=x2-4x+4+4x-4y-4y2+4y-1
=x2-4y2+3
=(x+2y)(x-2y)+3,
当x=4.85,y=2.575时,
原式=(4.85+2×2.575)(4.85-2×2.575)+3=0.
22.(1)解:如图所示:△A1B1C1是所求图形,
(2)解:如图所示:CD即为所求,
(3)解:如图所示:△QBC即为所求,
23.(1)证明:∵DE∥AB,
∴∠A=∠CDE,∠DFA=∠FDE,
∵∠DFA=∠A,
∴∠CDE=∠FDE,
∴DE平分∠CDF;
(2)解:∵∠A+∠C+∠ABC=180°,∠C=80°,∠ABC=60°,
∴∠A=180°−60°−80°=40°,
∵∠DFA=∠A,
∴∠GFB=∠DFA=40°,
∵∠G+∠GFB=∠ABC,
∴∠G=∠ABC−∠GFB=60°−40°=20°.
24.(1)2
(2)解:x2-4xy+5y2+2y+5
=(x2-4xy+4y2)+(y2+2y+1)+4
=(x-2y)2+(y+1)2+4
∵(x-2y)2≥0,(y+1)2≥0,4>0,
∴x2+5y2-4xy+2y+5>0,
∴无论x、y取何值,代数式x2-4xy+5y2+2y+5的值一定是正数.
25.(1)(a+b)2 =a2+2ab+b2;(a-b)2 =a2-2ab+b2;(a+b)(a-b)= a2-b2
(2)10
(3)解:设AC=x,则BC=CF=10-x,
由题意,,
∵,
∴,
即:,
∴,
∴,
∴图中阴影部分面积为7.
26.(1)与;与
(2)解:∵,
∴
∵CD为角平分线
∴
∵
∴是有两个角相等的三角形
∵,,
∴与原来三角形是“等角三角形”
∴CD是△ABC的等角分割线.
(3)解:①当是有两个角相等的三角形,且时,如图1,
由(2)可知,,满足CD为△ABC的等角分割线;
②当是有两个角相等的三角形,且时, 如图2,
由题意知,
∴,
∴,
∴时,满足CD为△ABC的等角分割线;
③当是有两个角相等的三角形,且时,与是“等角三角形”,如图3,
,
∵
∴
∴时,满足CD为△ABC的等角分割线;
④当是有两个角相等的三角形,且时,与是“等角三角形”如图4,
∴
∵
∴
∴时,满足CD为△ABC的等角分割线;
综上所述,的度数为 或或 或 .
相关试卷
这是一份江苏省无锡市新吴区2022-2023学年七年级下学期期中数学试卷 (含答案),共22页。试卷主要包含了选择题,填空题,解答题,如图5,等内容,欢迎下载使用。
这是一份江苏省无锡市凤翔中学2022-2023学年七年级下学期期中数学试卷,共6页。
这是一份江苏省无锡市锡山区锡北片2022-2023学年七年级下学期期中数学试卷(含答案),共20页。