高考数学二轮复习专题28 等差等比数列的证明问题(2份打包,教师版+原卷版)
展开专题28 等差等比数列的证明问题
【高考真题】
1.(2022·全国甲理文) 记Sn为数列{an}的前n项和.已知+n=2an+1.
(1)证明:{an}是等差数列;
(2)若a4,a7,a9成等比数列,求Sn的最小值.
【方法总结】
1.等差数列的四个判定方法
(1)定义法:an+1-an=d(常数)(n∈N*)⇔{an}是等差数列.
(2)等差中项法:2an+1=an+an+2(n∈N*)⇔{an}是等差数列.
(3)通项公式法:an=pn+q(p,q为常数,n∈N*)⇔{an}是等差数列.
(4)前n项和公式法:Sn=An2+Bn(A,B为常数,n∈N*)⇔{an}是等差数列.
提醒:(1)定义法和等差中项法主要适合在解答题中使用,通项公式法和前n项和公式法主要适合在选择题或填空题中使用.
(2)若要判定一个数列不是等差数列,则只需判定存在连续三项不成等差数列即可.
2.等比数列的四个判定方法
(1)定义法:=q(q是不为0的常数,n∈N*)⇔{an}是等比数列.
(2)等比中项法:a=an·an+2(an·an+1·an+2≠0,n∈N*)⇔{an}是等比数列.
(3)通项公式法:an=cqn(c,q均是不为0的常数,n∈N*)⇔{an}是等比数列.
(4)前n项和公式法:Sn=k·qn-k(k为常数且k≠0,q≠0,1),则{an}是等比数列.
提醒:(1)定义法和等比中项法主要适合在解答题中使用,通项公式法和前n项和公式法主要适合在选择题或填空题中使用.
(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.
【题型突破】
1.已知等差数列{an}的前n项和为Sn,且a3=7,a5+a7=26.
(1)求an及Sn;
(2)令bn=(n∈N*),求证:数列{bn}为等差数列.
2.已知数列{an}中,a1=,an=2-(n≥2,n∈N*),数列{bn}满足bn=(n∈N*).
(1)求证:数列{bn}是等差数列;
(2)求数列{an}中的最大项和最小项,并说明理由.
3.在数列{an}中,a1=4,nan+1-(n+1)an=2n2+2n.
(1)求证:数列是等差数列;
(2)求数列的前n项和Sn.
4.数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*.
(1)求证:数列是等差数列;
(2)设bn=3n·,求数列{bn}的前n项和Sn.
5.若数列{an}的前n项和为Sn,且满足an+2SnSn-1=0(n≥2),a1=.
(1)求证:成等差数列;
(2)求数列{an}的通项公式.
6.已知数列{an}的前n项和为Sn,且2Sn=3an-3n+1+3(n∈N*).
(1)设bn=,求证:数列{bn}为等差数列,并求出数列{an}的通项公式;
(2)设cn=-,Tn=c1+c2+c3+…+cn,求Tn.
7.(2021·全国乙)设Sn为数列{an}的前n项和,bn为数列{Sn}的前n项积,已知+=2.
(1)证明:数列{bn}是等差数列;
(2)求{an}的通项公式.
8.(2014·全国Ⅰ)已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.
(1)证明:an+2-an=λ;
(2)是否存在λ,使得{an}为等差数列?并说明理由.
9.设数列{an}的前n项和为Sn,且满足an-Sn-1=0(n∈N*).
(1)求数列{an}的通项公式;
(2)是否存在实数λ,使得数列{Sn+(n+2n)λ}为等差数列?若存在,求出λ的值;若不存在,请说明理由.
10.若数列{bn}对于任意的n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.如数
列cn,若cn=则数列{cn}是公差为8的准等差数列.设数列{an}满足a1=a,对于n∈N*,都有an+an+1=2n.
(1)求证:{an}是准等差数列;
(2)求{an}的通项公式及前20项和S20.
11.已知数列{an}的首项a1>0,an+1=(n∈N*),且a1=.
(1)求证:是等比数列,并求出{an}的通项公式;
(2)求数列的前n项和Tn.
12.已知数列{an}的前n项和为Sn,n∈N*,a1=1,a2=,a3=,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn-
1.
(1)求a4的值;
(2)证明:为等比数列.
13.已知数列{an}的前n项和Sn满足Sn=2an+(-1)n(n∈N*).
(1)求数列{an}的前三项a1,a2,a3;
(2)求证:数列为等比数列,并求出{an}的通项公式.
14.已知在正项数列{an}中,a1=2,点An(,)在双曲线y2-x2=1上,数列{bn}中,点(bn,Tn)在
直线y=-x+1上,其中Tn是数列{bn}的前n项和.
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等比数列.
15.已知数列{an}满足:a1=1,an+1=(n∈N*),设bn=a2n-1.
(1)求b2,b3,并证明bn+1=2bn+2;
(2)①证明:数列{bn+2}为等比数列;
②若a2k,a2k+1,9+a2k+2成等比数列,求正整数k的值.
16.(2019·全国Ⅱ)已知数列{an}和{bn}满足a1=1,b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.
(1)证明:{an+bn}是等比数列,{an-bn}是等差数列;
(2)求{an}和{bn}的通项公式.
17.(2018·全国Ⅰ)已知数列{an}满足a1=1,nan+1=2(n+1)an,设bn=.
(1)求b1,b2,b3;
(2)判断数列{bn}是否为等比数列,并说明理由;
(3)求{an}的通项公式.
18.已知数列{an}的前n项和为Sn,a1=1,an>0,S=a-λSn+1,其中λ为常数.
(1)证明:Sn+1=2Sn+λ;
(2)是否存在实数λ,使得数列{an}为等比数列,若存在,求出λ;若不存在,说明理由.
19.设等差数列{an}的前n项和为Sn,a=(a1,1),b=(1,a10),若a·b=24,且S11=143,数列{bn}的前n
项和为Tn,且满足=λTn-(a1-1)(n∈N*).
(1)求数列{an}的通项公式及数列的前n项和Mn;
(2)是否存在非零实数λ,使得数列{bn}为等比数列?并说明理由.
20.已知数列{an}满足a1=1,an+1=2an+λ(λ为常数).
(1)试探究数列{an+λ}是不是等比数列,并求an;
(2)当λ=1时,求数列{n(an+λ)}的前n项和Tn.