高中数学高考2018高考数学(文)大一轮复习习题 升级增分训练 导数的综合应用(二) Word版含答案
展开升级增分训练 导数的综合应用(二)
1.已知函数f(x)=(ax2-x+a)ex,g(x)=bln x-x(b>0).
(1)讨论函数f(x)的单调性;
(2)当a=时,若对任意x1∈(0,2),存在x2∈,使f(x1)+g(x2)≥0成立,求实数b的取值范围.
解:(1)由题意得f′(x)=(x+1)(ax+a-1)ex.
当a=0时,f′(x)=-(x+1)ex,当x∈(-∞,-1)时,f′(x)>0,f(x)在(-∞,-1)上单调递增;
当x∈(-1,+∞)时,f′(x)<0,f(x)在(-1,+∞)上单调递减.
当a≠0时,令f′(x)=0,则x=-1或x=-1+,
当a>0时,因为-1+>-1,
所以f(x)在(-∞,-1)和上单调递增,在上单调递减;
当a<0时,因为-1+<-1,
所以f(x)在和(-1,+∞)上单调递减,在上单调递增.
(2)由(1)知当a=时,f(x)在(0,1)上单调递减,在(1,2)上单调递增,
因此f(x)在(0,2)上的最小值为f(1)=0.
由题意知,对任意x1∈(0,2),存在x2∈,
使g(x2)≥-f(x1)成立,
因为max=0,
所以bln x2-x2≥0,即b≥.
令h(x)=,x∈,
则h′(x)=<0,
因此h(x)min=h(2)=,所以b≥,
即实数b的取值范围是.
2.(2017·南昌模拟)已知函数f(x)=ln x-ax2-a+2(a∈R,a为常数)
(1)讨论函数f(x)的单调性;
(2)若存在x0∈(0,1],使得对任意的a∈(-2,0],不等式mea+f(x0)>0(其中e为自然对数的底数)都成立,求实数m的取值范围.
解:(1)函数f(x)的定义域为(0,+∞),
f′(x)=-2ax=,当a≤0时,f′(x)≥0,
所以函数f(x)在区间(0,+∞)上单调递增;
当a>0时,由f′(x)≥0且x>0,
解得0<x≤ ,
所以函数f(x)在区间上单调递增,在区间上单调递减.
(2)由(1)知,当a∈(-2,0]时,函数f(x)在区间(0,1]上单调递增,
所以x∈(0,1]时,函数f(x)的最大值是f(1)=2-2a,
对任意的a∈(-2,0],
都存在x0∈(0,1],不等式mea+f(x0)>0都成立,
等价于对任意的a∈(-2,0],不等式mea+2-2a>0都成立,不等式mea+2-2a>0可化为m>,
记g(a)=(a∈(-2,0]),
则g′(a)==>0,
所以g(a)的最大值是g(0)=-2,
所以实数m的取值范围是(-2,+∞).
3.已知函数f(x)=在点(1,f(1))处的切线与x轴平行.
(1)求实数a的值及f(x)的极值;
(2)是否存在区间(t>0)使函数f(x)在此区间上存在极值点和零点?若存在,求出实数t的取值范围,若不存在,请说明理由.
解:(1)f′(x)==(x>0).
∵f(x)在点(1,f(1))处的切线与x轴平行,
∴f′(1)=1-a-ln 1=0.
解得a=1.∴f(x)=,f′(x)=-,
当0<x<1时,f′(x)>0,当x>1时,f′(x)<0,
∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
故f(x)在x=1处取得极大值1,无极小值.
(2)∵x>1时,f(x)=>0,
当x→0时,f(x)→-∞,
由(1)得f(x)在(0,1)上单调递增,
由零点存在性定理,知f(x)在区间(0,1)上存在唯一零点.
函数f(x)的图象如图所示.
∵函数f(x)在区间(t>0)上存在极值点和零点,
∴即解得<t<.
∴存在符合条件的区间,实数t的取值范围为.
4.(2017·沈阳质监)已知函数f(x)=x2-aln x+b(a∈R).
(1)若曲线y=f(x)在x=1处的切线的方程为3x-y-3=0,求实数a,b的值;
(2)若x=1是函数f(x)的极值点,求实数a的值;
(3)若-2≤a<0,对任意x1,x2∈(0,2],不等式|f(x1)-f(x2)|≤m恒成立,求m的最小值.
解:(1)因为f(x)=x2-aln x+b,
所以f′(x)=x-,
因为曲线y=f(x)在x=1处的切线的方程为3x-y-3=0,
所以即解得
(2)因为x=1是函数f(x)的极值点,
所以f′(1)=1-a=0,所以a=1.
当a=1时,f(x)=x2-ln x+b,定义域为(0,+∞),
f′(x)=x-==,
当0<x<1时,f′(x)<0,f(x)单调递减,
当x>1时,f′(x)>0,f(x)单调递增,
所以a=1.
(3)因为-2≤a<0,0<x≤2,所以f′(x)=x->0,
故函数f(x)在(0,2]上单调递增,
不妨设0<x1≤x2≤2,
则|f(x1)-f(x2)|≤m可化为f(x2)+≤f(x1)+,
设h(x)=f(x)+=x2-aln x+b+,
则h(x1)≥h(x2).
所以h(x)为(0,2]上的减函数,
即h′(x)=x--≤0在(0,2]上恒成立,
等价于x3-ax-m≤0在(0,2]上恒成立,
即m≥x3-ax在(0,2]上恒成立,
又-2≤a<0,所以ax≥-2x,所以x3-ax≤x3+2x,
而函数y=x3+2x在(0,2]上是增函数,
所以x3+2x≤12(当且仅当a=-2,x=2时等号成立).
所以m≥12,
即m的最小值为12.
高中数学高考2018高考数学(文)大一轮复习习题 升级增分训练 数列 Word版含答案: 这是一份高中数学高考2018高考数学(文)大一轮复习习题 升级增分训练 数列 Word版含答案,共7页。
高中数学高考2018高考数学(文)大一轮复习习题 升级增分训练 函数与方程 Word版含答案: 这是一份高中数学高考2018高考数学(文)大一轮复习习题 升级增分训练 函数与方程 Word版含答案,共6页。试卷主要包含了已知定义在R上的函数f满足等内容,欢迎下载使用。
高中数学高考2018高考数学(文)大一轮复习习题 升级增分训练 利用导数探究含参数函数的性质 Word版含答案: 这是一份高中数学高考2018高考数学(文)大一轮复习习题 升级增分训练 利用导数探究含参数函数的性质 Word版含答案,共5页。试卷主要包含了已知函数f=ax-1-ln x,设函数f=x2-ax+b等内容,欢迎下载使用。