高中数学高考7 第6讲 双曲线 新题培优练
展开 [基础题组练]
1.“k<9”是“方程+=1表示双曲线”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:选A.因为方程+=1表示双曲线,所以(25-k)(k-9)<0,所以k<9或k>25,
所以“k<9”是“方程+=1表示双曲线”的充分不必要条件,故选A.
2.(2018·高考全国卷Ⅱ)双曲线-=1(a>0,b>0)的离心率为,则其渐近线方程为( )
A.y=±x B.y=±x
C.y=±x D.y=±x
解析:选A.法一:由题意知,e==,所以c=a,所以b==a,所以=,所以该双曲线的渐近线方程为y=±x=±x,故选A.
法二:由e===,得=,所以该双曲线的渐近线方程为y=±x=±x,故选A.
3.(一题多解)已知方程-=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )
A.(-1,3) B.(-1,)
C.(0,3) D.(0,)
解析:选A.法一:由题意可知:c2=(m2+n)+(3m2-n)=4m2,其中c为半焦距,
所以2c=2×|2m|=4,所以|m|=1,
因为方程-=1表示双曲线,
所以(m2+n)·(3m2-n)>0,
所以-m2
所以 ①
或 ②
由①得m2=1,n∈(-1,3).②无解.故选A.
4.若双曲线C1:-=1与C2:-=1(a>0,b>0)的渐近线相同,且双曲线C2的焦距为4,则b=( )
A.2 B.4
C.6 D.8
解析:选B.由题意得,=2⇒b=2a,C2的焦距2c=4⇒c==2⇒b=4,故选B.
5.(一题多解)(2019·开封模拟)过双曲线-=1(a>0,b>0)的左焦点F(-c,0)作圆O:x2+y2=a2的切线,切点为E,延长FE交双曲线于点P,若E为线段FP的中点,则双曲线的离心率为( )
A. B.
C.+1 D.
解析:选A.法一:如图所示,不妨设E在x轴上方,F′为双曲线的右焦点,连接OE,PF′,
因为PF是圆O的切线,所以OE⊥PE,又E,O分别为PF,FF′的中点,所以|OE|=|PF′|,又|OE|=a,所以|PF′|=2a,根据双曲线的性质,|PF|-|PF′|=2a,所以|PF|=4a,所以|EF|=2a,在Rt△OEF中,|OE|2+|EF|2=|OF|2,即a2+4a2=c2,所以e=,故选A.
法二:连接OE,因为|OF|=c,|OE|=a,OE⊥EF,所以|EF|=b,设F′为双曲线的右焦点,连接PF′,因为O,E分别为线段FF′,FP的中点,所以|PF|=2b,|PF′|=2a,所以|PF|-|PF′|=2a,所以b=2a,所以e==.
6.(2018·高考全国卷Ⅰ)已知双曲线C:-y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=( )
A. B.3
C.2 D.4
解析:选B.因为双曲线-y2=1的渐近线方程为y=±x,所以∠MON=60°.不妨设过点F的直线与直线y=x交于点M,由△OMN为直角三角形,不妨设∠OMN=90°,则∠MFO=60°,又直线MN过点F(2,0),所以直线MN的方程为y=-(x-2),
由得所以M,所以|OM|==,所以|MN|=|OM|=3,故选B.
7.(2019·辽宁五校协作体联合模拟)在平面直角坐标系xOy中,已知双曲线C:-=1(a>0,b>0)的离心率为,从双曲线C的右焦点F引渐近线的垂线,垂足为A,若△AFO的面积为1,则双曲线C的方程为( )
A.-=1 B.-y2=1
C.-=1 D.x2-=1
解析:选D.因为双曲线C的右焦点F到渐近线的距离|FA|=b,|OA|=a,所以ab=2,又双曲线C的离心率为,所以 =,即b2=4a2,解得a2=1,b2=4,所以双曲线C的方程为x2-=1,故选D.
8.(2019·河北邯郸联考)如图,F1,F2是双曲线C:-=1(a>0,b>0)的左、右两个焦点,若直线y=x与双曲线C交于P,Q两点,且四边形PF1QF2为矩形,则双曲线的离心率为( )
A.2+ B.
C.2+ D.
解析:选D.由题意可得,矩形的对角线长相等,将直线y=x代入双曲线C方程,可得x=±,所以·=c,所以2a2b2=c2(b2-a2),即2(e2-1)=e4-2e2,所以e4-4e2+2=0.因为e>1,所以e2=2+,所以e=,故选D.
9.(2019·贵阳模拟)过双曲线C:-=1(a>0,b>0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P,若=2,则双曲线的离心率为( )
A. B.
C. D.2
解析:选B.设P(0,3m),由=2,可得点M的坐标为,因为OM⊥PF,所以·=-1,所以m2=c2,所以M,由|OM|2+|MF|2=|OF|2,|OM|=a,|OF|=c得,a2++=c2,a2=c2,所以e==,故选B.
10.(2019·石家庄模拟)双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1作倾斜角为30°的直线,与y轴和双曲线的右支分别交于A,B两点,若点A平分线段F1B,则该双曲线的离心率是( )
A. B.
C.2 D.
解析:选A.由题意可知F1(-c,0),设A(0,y0),因为A是F1B的中点,所以点B的横坐标为c,又点B在双曲线的右支上,所以B,因为直线F1B的倾斜角为30°,所以=,化简整理得=,又b2=c2-a2,所以3c2-3a2-2ac=0,两边同时除以a2得3e2-2e-3=0,解得e=或e=-(舍去),故选A.
11.已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是双曲线C的两个焦点.若·<0,则y0的取值范围是( )
A. B.
C. D.
解析:选A.由题意知a=,b=1,c=,
设F1(-,0),F2(,0),
则=(--x0,-y0),=(-x0,-y0).
因为·<0,
所以(--x0)(-x0)+y<0,
即x-3+y<0.
因为点M(x0,y0)在双曲线C上,
所以-y=1,即x=2+2y,
所以2+2y-3+y<0,所以-
A.(1,)
B.(,)
C.(,2)
D.(1,)∪(,+∞)
解析:选D.设双曲线:-=1(a>0,b>0)的左焦点为F1(-c,0),
令x=-c,可得y=±,可设A,B.
又设D(0,b),可得=.
=,=.
由△ABD为钝角三角形,可得∠DAB为钝角或∠ADB为钝角.
当∠DAB为钝角时,可得·<0,即为0-·<0,化为a>b,即有a2>b2=c2-a2.可得c2<2a2,即e=<.又e>1,可得1
可得e4-4e2+2>0.又e>1,可得e>.
综上可得,e的范围为(1,)∪(,+∞).故选D.
13.若双曲线-=1(a>0,b>0)的一条渐近线经过点(3,-4),则此双曲线的离心率为________.
解析:由双曲线的渐近线过点(3,-4)知=,
所以=.又b2=c2-a2,所以=,
即e2-1=,所以e2=,所以e=.
答案:
14.双曲线-=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a=________.
解析:双曲线-=1的渐近线方程为y=±x,由已知可得两条渐近线方程互相垂直,由双曲线的对称性可得=1.又正方形OABC的边长为2,所以c=2,所以a2+b2=c2=(2)2,解得a=2.
答案:2
15.(2019·武汉调研)已知点P在双曲线-=1(a>0,b>0)上,PF⊥x轴(其中F为双曲线的右焦点),点P到该双曲线的两条渐近线的距离之比为,则该双曲线的离心率为________.
解析:由题意知F(c,0),由PF⊥x轴,不妨设点P在第一象限,则P,双曲线渐近线的方程为bx±ay=0,由题意,得=,解得c=2b,又c2=a2+b2,所以a=b,所以双曲线的离心率e===.
答案:
16.(2019·长春监测)已知O为坐标原点,设F1,F2分别是双曲线x2-y2=1的左、右焦点,P为双曲线左支上任一点,过点F1作∠F1PF2的平分线的垂线,垂足为H,则|OH|=________.
解析:如图所示,延长F1H交PF2于点Q,由PH为∠F1PF2的平分线及PH⊥F1Q,可知|PF1|=|PQ|,根据双曲线的定义,得|PF2|-|PF1|=2,从而|QF2|=2,在△F1QF2中,易知OH为中位线,故|OH|=1.
答案:1
[综合题组练]
1.(一题多解)已知双曲线C:-=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
解析:选B.法一:由双曲线的渐近线方程可设双曲线方程为-=k(k>0),即-=1,因为双曲线与椭圆+=1有公共焦点,所以4k+5k=12-3,解得k=1,故双曲线C的方程为-=1.故选B.
法二:因为椭圆+=1的焦点为(±3,0),双曲线与椭圆+=1有公共焦点,所以a2+b2=(±3)2=9①,因为双曲线的一条渐近线为y=x,所以=②,联立①②可解得a2=4,b2=5.所以双曲线C的方程为-=1.
2.(2019·郑州模拟)已知双曲线C:-=1(a>b>0)的两条渐近线与圆O:x2+y2=5交于M,N,P,Q四点,若四边形MNPQ的面积为8,则双曲线C的渐近线方程为( )
A.y=±x B.y=±x
C.y=±x D.y=±x
解析:选B.以原点为圆心,半径长为的圆的方程为x2+y2=5,双曲线的两条渐近线方程为y=±x,不妨设M,
因为四边形MNPQ的面积为8,所以4x·x=8,
所以x2=2,
将M代入x2+y2=5,可得x2+x2=5,
所以+=5,a>b>0,
解得=,故选B.
3.(2019·石家庄模拟)以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C,其左、右焦点分别是F1,F2.已知点M的坐标为(2,1),双曲线C上的点P(x0,y0)(x0>0,y0>0)满足=,则S△PMF1-S△PMF2=( )
A.2 B.4
C.1 D.-1
解析:选A.由题意,知双曲线方程为-=1,|PF1|-|PF2|=4,由=,可得=,即F1M平分∠PF1F2.
又结合平面几何知识可得,△F1PF2的内心在直线x=2上,所以点M(2,1)就是△F1PF2的内心.
故S△PMF1-S△PMF2=×(|PF1|-|PF2|)×1=×4×1=2.
4.(2019·高考全国卷Ⅰ)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点,若=,·=0,则C的离心率为________.
解析:通解:因为·=0,所以F1B⊥F2B,如图.
所以|OF1|=|OB|,所以∠BF1O=∠F1BO,所以∠BOF2=2∠BF1O.因为=,所以点A为F1B的中点,又点O为F1F2的中点,所以OA∥BF2,所以F1B⊥OA,因为直线OA,OB为双曲线C的两条渐近线,所以tan ∠BF1O=,tan ∠BOF2=.因为tan ∠BOF2=tan(2∠BF1O),所以=,所以b2=3a2,所以c2-a2=3a2,即2a=c,所以双曲线的离心率e==2.
优解:因为·=0,所以F1B⊥F2B,在Rt△F1BF2 中,|OB|=|OF2|,所以∠OBF2=∠OF2B,又=,所以A为F1B的中点,所以OA∥F2B,所以∠F1OA=∠OF2B.又∠F1OA=∠BOF2,所以△OBF2为等边三角形.由F2(c,0)可得B,因为点B在直线y=x上,所以c=·,所以=,所以e==2.
答案:2
5.设双曲线-=1的两个焦点分别为F1,F2,离心率为2.
(1)若A,B分别为此双曲线的渐近线l1,l2上的动点,且2|AB|=5|F1F2|,求线段AB的中点M的轨迹方程,并说明轨迹是什么曲线;
(2)过点N(1,0)能否作出直线l,使l交双曲线于P,Q两点,且·=0,若存在,求出直线l的方程;若不存在,说明理由.
解:(1)因为e=2,所以c2=4a2,
因为c2=a2+3,所以a=1,c=2,
所以双曲线方程为y2-=1,渐近线方程为y=±x;
设A(x1,y1),B(x2,y2),AB的中点M(x,y),
因为2|AB|=5|F1F2|,
所以|AB|=|F1F2|=10,
所以=10,
因为y1=x1,y2=-x2,2x=x1+x2,2y=y1+y2,
所以y1+y2=(x1-x2),y1-y2=(x1+x2),
所以=10,
所以3(2y)2+(2x)2=100,
即+=1,
则M的轨迹是中心在原点,焦点在x轴上,长轴长为10,短轴长为的椭圆.
(2)假设存在满足条件的直线l.
设l:y=k(x-1),l与双曲线交于P(x1,y1),Q(x2,y2),
因为·=0,
所以x1x2+y1y2=0,
所以x1x2+k2(x1-1)(x2-1)=0,
所以x1x2+k2[x1x2-(x1+x2)+1]=0,①
因为,可得(3k2-1)x2-6k2x+3k2-3=0,
所以x1+x2=,x1x2=,②
将②代入①得k2+3=0,
所以k不存在,所以假设不成立,即不存在满足条件的直线l.
高中数学高考8 第7讲 抛物线 新题培优练: 这是一份高中数学高考8 第7讲 抛物线 新题培优练,共8页。试卷主要包含了过抛物线C,已知直线y=k与抛物线C,抛物线C,设抛物线C,已知点M和抛物线C等内容,欢迎下载使用。
高中数学高考7 第7讲 立体几何中的向量方法 新题培优练: 这是一份高中数学高考7 第7讲 立体几何中的向量方法 新题培优练,共11页。试卷主要包含了))等内容,欢迎下载使用。
高中数学高考7 第7讲 函数的图象 新题培优练: 这是一份高中数学高考7 第7讲 函数的图象 新题培优练,共7页。试卷主要包含了故选B.等内容,欢迎下载使用。