2023年黑龙江省哈尔滨市中考数学模拟试题及答案
展开注意事项:
1.本试卷满分为150分,考试时间为120分钟。
2.答卷前先将密封线左侧的项目填写清楚。
3.答案须用黑色字迹的钢笔、签字笔或圆珠笔书写,密封线内不得答题。
2023年黑龙江省哈尔滨市中考数学试卷
一、选择题(每小题3分,共计30分)
1.(3分)(2023•哈尔滨)的相反数是
A.9 B. C. D.
2.(3分)(2023•哈尔滨)下列运算一定正确的是
A. B.
C. D.
3.(3分)(2023•哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是
A. B.
C. D.
4.(3分)(2023•哈尔滨)七个大小相同的正方体搭成的几何体如图所示,其左视图是
A. B.
C. D.
5.(3分)(2023•哈尔滨)如图,、分别与相切于、两点,点为上一点,连接、,若,则的度数为
A. B. C. D.
6.(3分)(2023•哈尔滨)将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为
A. B. C. D.
7.(3分)(2023•哈尔滨)某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为
A. B. C. D.
8.(3分)(2023•哈尔滨)方程的解为
A. B. C. D.
9.(3分)(2023•哈尔滨)点在反比例函数的图象上,则下列各点在此函数图象上的是
A. B., C. D.,
10.(3分)(2023•哈尔滨)如图,在中,点在对角线上,,交于点,,交于点,则下列式子一定正确的是
A. B. C. D.
二、填空题(每小题3分,共计30分)
11.(3分)(2023•哈尔滨)数6260000用科学记数法可表示为 .
12.(3分)(2023•哈尔滨)在函数中,自变量的取值范围是 .
13.(3分)(2023•哈尔滨)把多项式分解因式的结果是 .
14.(3分)(2023•哈尔滨)不等式组的解集是 .
15.(3分)(2023•哈尔滨)二次函数的最大值是 .
16.(3分)(2023•哈尔滨)如图,将绕点逆时针旋转得到△,其中点与是对应点,点与是对应点,点落在边上,连接,若,,,则的长为 .
17.(3分)(2023•哈尔滨)一个扇形的弧长是,半径是,则此扇形的圆心角是 度.
18.(3分)(2023•哈尔滨)在中,,,点在边上,连接,若为直角三角形,则的度数为 度.
19.(3分)(2023•哈尔滨)同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面出现的点数相同的概率为 .
20.(3分)(2023•哈尔滨)如图,在四边形中,,,,点为边上一点,连接、,与交于点,且,若,,则的长为 .
三、解答题(其中21~22题各7分,23-24题各8分,25~27题各10分,共计60分)
21.(7分)(2023•哈尔滨)先化简再求值:,其中.
22.(7分)(2023•哈尔滨)图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段的两个端点均在小正方形的顶点上.
(1)在图1中画出以为底边的等腰直角三角形,点在小正方形顶点上;
(2)在图2中画出以为腰的等腰三角形,点在小正方形的顶点上,且的面积为8.
23.(8分)(2023•哈尔滨)建国七十周年到来之际,海庆中学决定举办以“祖国在我心中”为主题的读书活动.为了使活动更具有针对性,学校在全校范围内随机抽取部分学生进行问卷调查,要求学生在“教育、科技、国防、农业、工业”五类书籍中,选取自己最想读的一种(必选且只选一种),学校将收集到的调查结果适当整理后,绘制成如图所示的不完整的统计图.请根据图中所给的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)请通过计算补全条形统计图;
(3)如果海庆中学共有1500名学生,请你估计该校最想读科技类书籍的学生有多少名.
24.(8分)(2023•哈尔滨)已知:在矩形中,是对角线,于点,于点.
(1)如图1,求证:;
(2)如图2,当时,连接、,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形面积的.
25.(10分)(2023•哈尔滨)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;
(1)求每副围棋和每副中国象棋各多少元;
(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?
26.(10分)(2023•哈尔滨)已知:为的直径,为的半径,、是的两条弦,于点,于点,连接、,与交于点.
(1)如图1,若与交于点,求证:;
(2)如图2,连接、,与交于点,若,,求证:;
(3)如图3,在(2)的条件下,连接、、,与交于点,与交于点,连接,若,,求的长.
27.(10分)(2023•哈尔滨)如图,在平面直角坐标系中,点为坐标原点,直线与轴交于点,与轴交于点,直线与轴交于点,且点与点关于轴对称;
(1)求直线的解析式;
(2)点为线段上一点,点为线段上一点,,连接,设点的横坐标为,的面积为,求与之间的函数关系式(不要求写出自变量的取值范围);
(3)在(2)的条件下,点在线段上,点在线段的延长线上,且点的纵坐标为,连接、、,与交于点,,连接,的延长线与轴的负半轴交于点,连接、,若,求直线的解析式.
2023年黑龙江省哈尔滨市中考数学试卷
参考答案与试题解析
一、选择题(每小题3分,共计30分)
1.(3分)的相反数是
A.9 B. C. D.
【考点】相反数
【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.
【解答】解:的相反数是9,
故选:.
2.(3分)下列运算一定正确的是
A. B.
C. D.
【考点】幂的乘方与积的乘方;同底数幂的乘法;合并同类项;平方差公式
【分析】利用同底数幂的乘法,幂的乘方与积的乘法法则,平方差公式解题即可;
【解答】解:,错误;
,错误;
,错误;
故选:.
3.(3分)下列图形中既是轴对称图形又是中心对称图形的是
A. B.
C. D.
【考点】轴对称图形;中心对称图形
【分析】根据轴对称及中心对称图形的定义对各选项进行逐一分析即可.
【解答】解:、是轴对称图形,但不是中心对称图形,故此选项错误;
、是中心对称图形,也是轴对称图形,故此选项正确;
、是轴对称图形,不是中心对称图形,故此选项错误;
、是轴对称图形,不是中心对称图形,故此选项错误.
故选:.
4.(3分)七个大小相同的正方体搭成的几何体如图所示,其左视图是
A. B.
C. D.
【考点】简单组合体的三视图
【分析】左视图有2列,从左到右分别是2,1个正方形.
【解答】解:这个立体图形的左视图有2列,从左到右分别是2,1个正方形,
故选:.
5.(3分)如图,、分别与相切于、两点,点为上一点,连接、,若,则的度数为
A. B. C. D.
【考点】圆周角定理;切线的性质
【分析】先利用切线的性质得,再利用四边形的内角和计算出的度数,然后根据圆周角定理计算的度数.
【解答】解:连接、,
、分别与相切于、两点,
,,
,
,
.
故选:.
6.(3分)将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为
A. B. C. D.
【考点】二次函数图象与几何变换
【分析】根据“上加下减、左加右减”的原则进行解答即可.
【解答】解:将抛物线向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为,
故选:.
7.(3分)某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为
A. B. C. D.
【考点】一元二次方程的应用
【分析】设降价得百分率为,根据降低率的公式建立方程,求解即可.
【解答】解:设降价的百分率为
根据题意可列方程为
解方程得,(舍
每次降价得百分率为
故选:.
8.(3分)方程的解为
A. B. C. D.
【考点】解分式方程
【分析】将分式方程化为,即可求解;同时要进行验根即可求解;
【解答】解:,
,
,
;
将检验是方程的根,
方程的解为;
故选:.
9.(3分)点在反比例函数的图象上,则下列各点在此函数图象上的是
A. B., C. D.,
【考点】反比例函数图象上点的坐标特征
【分析】将点代入,求出函数解析式即可解题;
【解答】解:将点代入,
,
,
点在函数图象上,
故选:.
10.(3分)如图,在中,点在对角线上,,交于点,,交于点,则下列式子一定正确的是
A. B. C. D.
【考点】平行四边形的性质;相似三角形的判定与性质
【分析】根据平行四边形的性质以及相似三角形的性质.
【解答】解:
在中,
易证四边形为平行四边形
易证
,项错误
,项错误
,项错误
,项正确
故选:.
二、填空题(每小题3分,共计30分)
11.(3分)数6260000用科学记数法可表示为 .
【考点】科学记数法表示较大的数
【分析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.
【解答】解:6260000用科学记数法可表示为,
故答案为:.
12.(3分)在函数中,自变量的取值范围是 .
【考点】函数自变量的取值范围
【分析】函数中分母不为零是函数有意义的条件,因此即可;
【解答】解:函数中分母,
;
故答案为;
13.(3分)把多项式分解因式的结果是 .
【考点】提公因式法与公式法的综合运用
【分析】原式提取公因式,再利用完全平方公式分解即可.
【解答】解:
.
故答案为:.
14.(3分)不等式组的解集是 .
【考点】解一元一次不等式组
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【解答】解:解不等式,得:,
解不等式,得:,
不等式组的解集为,
故答案为:.
15.(3分)二次函数的最大值是 8 .
【考点】二次函数的最值
【分析】利用二次函数的性质解决问题.
【解答】解:,
有最大值,
当时,有最大值8.
故答案为8.
16.(3分)如图,将绕点逆时针旋转得到△,其中点与是对应点,点与是对应点,点落在边上,连接,若,,,则的长为 .
【考点】勾股定理;旋转的性质
【分析】由旋转的性质可得,,可得,由勾股定理可求解.
【解答】解:将绕点逆时针旋转得到△,
,
故答案为
17.(3分)一个扇形的弧长是,半径是,则此扇形的圆心角是 110 度.
【考点】弧长的计算
【分析】直接利用弧长公式即可求出的值,计算即可.
【解答】解:根据,
解得:,
故答案为:110.
18.(3分)在中,,,点在边上,连接,若为直角三角形,则的度数为 或10 度.
【考点】三角形的外角性质;三角形内角和定理
【分析】当为直角三角形时,存在两种情况:或,根据三角形的内角和定理可得结论.
【解答】解:分两种情况:
①如图1,当时,
,
;
②如图2,当时,
,,
,
,
综上,则的度数为或;
故答案为:或10;
19.(3分)同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面出现的点数相同的概率为 .
【考点】列表法与树状图法
【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两枚骰子点数相同的情况,再利用概率公式即可求得答案.
【解答】解:列表得:
由表可知一共有36种情况,两枚骰子点数相同的有6种,
所以两枚骰子点数相同的概率为,
故答案为:.
20.(3分)如图,在四边形中,,,,点为边上一点,连接、,与交于点,且,若,,则的长为 .
【考点】等边三角形的判定与性质
【分析】连接交于点,由题意可证垂直平分,是等边三角形,可得,,,通过证明是等边三角形
,可得,由勾股定理可求,的长.
【解答】解:如图,连接交于点
,,,
垂直平分,是等边三角形
,,
,
是等边三角形
,
三、解答题(其中21~22题各7分,23-24题各8分,25~27题各10分,共计60分)
21.(7分)先化简再求值:,其中.
【考点】分式的化简求值;特殊角的三角函数值
【分析】先根据分式的混合运算顺序和运算法则化简原式,再依据特殊锐角三角函数值求得的值,代入计算可得.
【解答】解:原式
,
当时,
原式
.
22.(7分)图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段的两个端点均在小正方形的顶点上.
(1)在图1中画出以为底边的等腰直角三角形,点在小正方形顶点上;
(2)在图2中画出以为腰的等腰三角形,点在小正方形的顶点上,且的面积为8.
【考点】等腰三角形的判定;勾股定理的逆定理;作图应用与设计作图;等腰直角三角形;勾股定理
【分析】(1)作的垂直平分线,作以为直径的圆,垂直平分线与圆的交点即为点;
(2)以为圆心,为半径作圆,格点即为点;
【解答】解;(1)作的垂直平分线,作以为直径的圆,垂直平分线与圆的交点即为点;
(2)以为圆心,为半径作圆,格点即为点;
23.(8分)建国七十周年到来之际,海庆中学决定举办以“祖国在我心中”为主题的读书活动.为了使活动更具有针对性,学校在全校范围内随机抽取部分学生进行问卷调查,要求学生在“教育、科技、国防、农业、工业”五类书籍中,选取自己最想读的一种(必选且只选一种),学校将收集到的调查结果适当整理后,绘制成如图所示的不完整的统计图.请根据图中所给的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)请通过计算补全条形统计图;
(3)如果海庆中学共有1500名学生,请你估计该校最想读科技类书籍的学生有多少名.
【考点】用样本估计总体;条形统计图;扇形统计图
【分析】(1)由最想读教育类书籍的学生数除以占的百分比求出总人数即可;
(2)确定出最想读国防类书籍的学生数,补全条形统计图即可;
(2)求出最想读科技类书籍的学生占的百分比,乘以1500即可得到结果.
【解答】解:(1)根据题意得:(名,
答:在这次调查中,一共抽取了60名学生;
(2)(名,
则本次调查中,选取国防类书籍的学生有15名,
补全条形统计图,如图所示:
(3)根据题意得:(名,
答:该校最想读科技类书籍的学生有225名.
24.(8分)已知:在矩形中,是对角线,于点,于点.
(1)如图1,求证:;
(2)如图2,当时,连接、,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形面积的.
【考点】矩形的性质;全等三角形的判定与性质
【分析】(1)由证明,即可得出结论;
(2)由平行线的性质得出,由直角三角形的性质得出,,得出的面积矩形的面积,由全等三角形的性质得出的面积矩形的面积;作于,由直角三角形的性质得出,得出的面积矩形的面积,同理:的面积矩形的面积.
【解答】(1)证明:四边形是矩形,
,,,
,
于点,于点,
,
在和中,,
,
;
(2)解:的面积的面积的面积的面积矩形面积的.理由如下:
,
,
,
,
,
,
,,
的面积矩形的面积,
,
的面积矩形的面积;
作于,如图所示:
,
,
的面积矩形的面积,
同理:的面积矩形的面积.
25.(10分)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;
(1)求每副围棋和每副中国象棋各多少元;
(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?
【考点】一元一次不等式的应用;二元一次方程组的应用
【分析】(1)设每副围棋元,每副中国象棋元,根据题意得:,求解即可;
(2)设购买围棋副,则购买象棋副,根据题意得:,即可求解;
【解答】解:(1)设每副围棋元,每副中国象棋元,
根据题意得:,
,
每副围棋16元,每副中国象棋10元;
(2)设购买围棋副,则购买象棋副,
根据题意得:,
,
最多可以购买25副围棋;
26.(10分)已知:为的直径,为的半径,、是的两条弦,于点,于点,连接、,与交于点.
(1)如图1,若与交于点,求证:;
(2)如图2,连接、,与交于点,若,,求证:;
(3)如图3,在(2)的条件下,连接、、,与交于点,与交于点,连接,若,,求的长.
【考点】圆的综合题
【分析】(1)利用“四边形内角和为”、“同弧所对的圆周角是圆心角的一半”即可;
(2)根据同圆中,相等的圆心角所对的弦相等,先证,再根据“等角对等边”,证明;
(3)由全等三角形性质和垂径定理可将转化为;可设两直角边为:,,再构造直角三角形利用,求出的值;求得,得为直角三角形,应用勾股定理求.
【解答】解:(1)如图1,于点,于点
(2)如图2,连接,
,
,
即:
,
,
(3)如图3,连接,过点作于,过点作于,连接,,
由(2)知:,
,
,
,,,
,即:
设,,
则,
在中,
四边形内接于,,
,
在中,
即:,解得:,(不符合题意,舍去)
,,
,,
在中,,,
在中,
,
,即,
.
27.(10分)如图,在平面直角坐标系中,点为坐标原点,直线与轴交于点,与轴交于点,直线与轴交于点,且点与点关于轴对称;
(1)求直线的解析式;
(2)点为线段上一点,点为线段上一点,,连接,设点的横坐标为,的面积为,求与之间的函数关系式(不要求写出自变量的取值范围);
(3)在(2)的条件下,点在线段上,点在线段的延长线上,且点的纵坐标为,连接、、,与交于点,,连接,的延长线与轴的负半轴交于点,连接、,若,求直线的解析式.
【考点】一次函数综合题
【分析】(1)由,求出,,,所以,设直线的解析式为,将,代入,解得,,所以直线的解析式;
(2)过点作于点点,过点作于,于点.由,即,求出,设,由,即,求出,由,求得,,所以,即;
(3)如图,延长至使,连接、、、交于点,易证,所以,,于是,,再证明,所以,,于是四边形为平行四边形,由,设,,则,,所以,,,过点作轴于点.求得,设直线的解析式为,解得,因此直线的解析式为.
【解答】解:(1),
,,,
点与点关于轴对称,
,
设直线的解析式为,
将,代入,
,
解得,,
直线的解析式;
(2)如图1,过点作于点点,过点作于,于点.
,,
,,
,
即,
,
点为直线上,
设,
,,
即,
,
,
,
,
,
,
即;
(3)如图,延长至使,连接、、、交于点.
,,
,
,
,,
,,
,
,
,,
,
,,
,
,
,
,
,
,,
四边形为平行四边形,
,,
,
过点作于点,
,
设,,则,
,
,,,
过点作轴于点.
点的纵坐标为,
,
,
,,
,,
,
,,
,
,
,,
,
,
设直线的解析式为,
,
解得,
直线的解析式为.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2023/7/10 10:01:28;用户:数学;邮箱:85886818-2@xyh.com;学号:27755521
参考答案到此结束
2022年黑龙江省哈尔滨市阿城区中考数学模拟试卷(word版无答案): 这是一份2022年黑龙江省哈尔滨市阿城区中考数学模拟试卷(word版无答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年黑龙江省哈尔滨市中考冲刺数学模拟试卷(一): 这是一份2023年黑龙江省哈尔滨市中考冲刺数学模拟试卷(一),共6页。
2022年黑龙江省哈尔滨市道外区中考数学模拟试卷(word版无答案): 这是一份2022年黑龙江省哈尔滨市道外区中考数学模拟试卷(word版无答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。