资料中包含下列文件,点击文件名可预览资料内容
还剩5页未读,
继续阅读
所属成套资源:数学华师大版中考考点经典导学
成套系列资料,整套一键下载
2022-2023 数学华师大版中考考点经典导学 考点19特殊平行四边形
展开这是一份2022-2023 数学华师大版中考考点经典导学 考点19特殊平行四边形,文件包含2022-2023数学华师大版中考考点经典导学考点19特殊平行四边形解析版docx、2022-2023数学华师大版中考考点经典导学考点19特殊平行四边形原卷版docx等2份学案配套教学资源,其中学案共36页, 欢迎下载使用。
真题演练
一、单选题
1.(2021·山东日照·中考真题)下列命题:①的算术平方根是2;②菱形既是中心对称图形又是轴对称图形;②天气预报说明天的降水概率是,则明天一定会下雨;④若一个多边形的各内角都等于,则它是正五边形,其中真命题的个数是( )
A.0B.1C.2D.3
2.(2021·山东潍坊·中考真题)若菱形两条对角线的长度是方程x2﹣6x+8=0的两根,则该菱形的边长为( )
A.B.4C.25D.5
3.(2021·山东潍坊·中考真题)古希腊数学家欧几里得在《几何原本》中记载了用尺规作某种六边形的方法,其步骤是:①在⊙O上任取一点A,连接AO并延长交⊙O于点B;②以点B为圆心,BO为半径作圆弧分别交⊙O于C,D两点;③连接CO,DO并延长分别交⊙O于点E,F;④顺次连接BC,CF,FA,AE,ED,DB,得到六边形AFCBDE.连接AD,EF,交于点G,则下列结论错误的是 .
A.△AOE的内心与外心都是点GB.∠FGA=∠FOA
C.点G是线段EF的三等分点D.EF=AF
4.(2021·山东威海·中考真题)如图,在平行四边形中,,.连接AC,过点B作,交DC的延长线于点E,连接AE,交BC于点F.若,则四边形ABEC的面积为( )
A.B.C.6D.
5.(2021·山东枣庄·中考真题)如图,四边形是菱形,对角线,相交于点,,,点是上一动点,点是的中点,则的最小值为( )
A.B.C.3D.
6.(2021·山东泰安·中考真题)如图,在平行四边形中,E是的中点,则下列四个结论:①;②若,,则;③若,则;④若,则与全等.其中正确结论的个数为( )
A.1个B.2个C.3个D.4个
7.(2021·山东·青岛大学附属中学二模)如图,在矩形中,为边上一点,把沿翻折,使点恰好落在边上的点处,,,则的长为( )
A.B.1
C.D.
8.(2021·山东·济宁学院附属中学二模)如图,矩形纸片,,,E为边D上一点,将沿所在的直线折叠,点C恰好落在边上的点F处,过点F作,垂足为点M,取的中点N,连接,则=( ).
A.5B.6C.D.
9.(2021·山东省诸城市树一中学三模)如图,菱形的边长为2,,分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,直线交于点,连接,则的长为( )
A.2B.3
C.D.
10.(2021·山东枣庄·一模)如图,在矩形ABCD中,O为AC中点,交AB于E,点G是AE中点且∠AOG=30°,下列结论:(1)DC=3OG;(2)OG=BC;(3)等边三角形;(4)S△AOE=S矩形ABCD,正确的有( )
A.1个B.2个C.3个D.4个
二、填空题
11.(2021·山东泰安·中考真题)如图,将矩形纸片折叠(),使落在上,为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将边折起,使点B落在上的点G处,连接,若,,则的长为________.
12.(2021·山东临沂·中考真题)数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是___(只填写序号).
①射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;
②车轮做成圆形,应用了“圆是中心对称图形”;
③学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;
④地板砖可以做成矩形,应用了“矩形对边相等”.
13.(2021·山东青岛·中考真题)已知正方形的边长为3,为上一点,连接并延长,交的延长线于点,过点作,交于点,交于点,为的中点,为上一动点,分别连接,.若,则的最小值为__________.
14.(2021·山东日照·中考真题)如图,在矩形中,,,点从点出发,以的速度沿边向点运动,到达点停止,同时,点从点出发,以的速度沿边向点运动,到达点停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当为_____时,与全等.
15.(2021·山东淄博·中考真题)两张宽为的纸条交叉重叠成四边形,如图所示.若,则对角线上的动点到三点距离之和的最小值是__________.
三、解答题
16.(2021·山东滨州·中考真题)如图,矩形ABCD的对角线AC、BD相交于点O,,.
(1)求证:四边形AOBE是菱形;
(2)若,,求菱形AOBE的面积.
17.(2021·山东枣庄·中考真题)如图1,对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形中,,,问四边形是垂美四边形吗?请说明理由;
(2)性质探究:如图1,垂美四边形的对角线,交于点.猜想:与有什么关系?并证明你的猜想.
(3)解决问题:如图3,分别以的直角边和斜边为边向外作正方形和正方形,连结,,.已知,,求的长.
18.(2021·山东淄博·中考真题)已知:在正方形的边上任取一点,连接,一条与垂直的直线(垂足为点)沿方向,从点开始向下平移,交边于点.
(1)当直线经过正方形的顶点时,如图1所示.求证:;
(2)当直线经过的中点时,与对角线交于点,连接,如图2所示.求的度数;
(3)直线继续向下平移,当点恰好落在对角线上时,交边于点,如图3所示.设,求与之间的关系式.
19.(2021·山东潍坊·中考真题)如图,在直角坐标系中,O为坐标原点,抛物线的顶点为(2,﹣),抛物线与轴的一个交点为A(4,0),点B(2,),点C与点B关于y轴对称.
(1)判断点C是否在该抛物线上,并说明理由;
(2)顺次连接AB,BC,CO,判断四边形的形状并证明;
知识点一:特殊平行四边形的性质与判定
关键点拨及对应举例
1.性质
(具有平行四边形的一切性质,对边平行且相等)
矩 形
菱 形
正方形
(1)矩形中,Rt△ABD≌Rt△DCA≌Rt△CDB≌Rt△BAC; _两 对全等的等腰三角形.所以经常结合勾股定理、等腰三角形的性质解题.
(2)菱形中,有两对全等的等腰三角形;Rt△ABO≌Rt△ADO≌Rt△CBO≌Rt△CDO;若∠ABC=60°,则△ABC和△ADC为 等边 三角形,且四个直角三角形中都有一个30°的锐角.
(3)正方形中有8个等腰直角三角形,解题时结合等腰直角三角形的锐角为45°,斜边=直角边.
(1)四个角都是直角
(2)对角线相等且互相平分.即
AO=CO=BO=DO.
(3)面积=长×宽
=2S△ABD=4S△AOB.
(1)四边相等
(2)对角线互相垂直、平分,一条对角线平分一组对角
(3)面积=底×高
=对角线_乘积的一半
(1)四条边都相等,四个角都是直角
(2)对角线相等且互相垂直平分
(3)面积=边长×边长
=2S△ABD
=4S△AOB
2.判定
(1)定义法:有一个角是直角的平行四边形
(2)有三个角是直角
(3)对角线相等的平行四边形
(1)定义法:有一组邻边相等的平行四边形
(2)对角线互相垂直的平行四边形
(3)四条边都相等的四边形
(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形
(2)一组邻边相等的矩形
(3)一个角是直角的菱形
(4)对角线相等且互相垂直、平分
例:判断正误.
邻边相等的四边形为菱形.( )
有三个角是直角的四边形式矩形.
( )
对角线互相垂直平分的四边形是菱形. ( )
对边相等的矩形是正方形.( )
3.联系
包含关系:
知识点二:特殊平行四边形的拓展归纳
4.中点四边形
(1)任意四边形多得到的中点四边形一定是平行四边形.
(2)对角线相等的四边形所得到的中点四边形是矩形.
(3)对角线互相垂直的四边形所得到的中点四边形是菱形.
(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.
如图,四边形ABCD为菱形,则其中点四边形EFGD的形状是矩形.
5.特殊四边形中的解题模型
(1)矩形:如图①,E为AD上任意一点,EF过矩形中心O,则△AOE≌△COF,S1=S2.
(2)正方形:如图②,若EF⊥MN,则EF=MN;如图③,P为AD边上任意一点,则PE+PF=AO. (变式:如图④,四边形ABCD为矩形,则PE+PF的求法利用面积法,需连接PO.)
图① 图② 图③ 图④
直线的函数表达式
取的一个特殊值
满足条件的点的个数
的可能取值范围
①
6
4个
③
②
3个
10
2个
④
相关学案
2022-2023 数学华师大版中考考点经典导学 考点25概率:
这是一份2022-2023 数学华师大版中考考点经典导学 考点25概率,文件包含2022-2023数学华师大版中考考点经典导学考点25概率解析版docx、2022-2023数学华师大版中考考点经典导学考点25概率原卷版docx等2份学案配套教学资源,其中学案共26页, 欢迎下载使用。
2022-2023 数学华师大版中考考点经典导学 考点24视图与投影:
这是一份2022-2023 数学华师大版中考考点经典导学 考点24视图与投影,文件包含2022-2023数学华师大版中考考点经典导学考点24视图与投影解析版docx、2022-2023数学华师大版中考考点经典导学考点24视图与投影原卷版docx等2份学案配套教学资源,其中学案共18页, 欢迎下载使用。
2022-2023 数学华师大版中考考点经典导学 考点22与圆有关的计算:
这是一份2022-2023 数学华师大版中考考点经典导学 考点22与圆有关的计算,文件包含2022-2023数学华师大版中考考点经典导学考点22与圆有关的计算解析版docx、2022-2023数学华师大版中考考点经典导学考点22与圆有关的计算原卷版docx等2份学案配套教学资源,其中学案共26页, 欢迎下载使用。