终身会员
搜索
    上传资料 赚现金

    2022-2023 数学华师大版中考考点经典导学 考点22与圆有关的计算 试卷

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      2022-2023 数学华师大版中考考点经典导学 考点22与圆有关的计算(原卷版).docx
    • 2022-2023 数学华师大版中考考点经典导学 考点22与圆有关的计算(解析版).docx
     2022-2023 数学华师大版中考考点经典导学 考点22与圆有关的计算(原卷版)第1页
     2022-2023 数学华师大版中考考点经典导学 考点22与圆有关的计算(原卷版)第2页
     2022-2023 数学华师大版中考考点经典导学 考点22与圆有关的计算(原卷版)第3页
     2022-2023 数学华师大版中考考点经典导学 考点22与圆有关的计算(解析版)第1页
     2022-2023 数学华师大版中考考点经典导学 考点22与圆有关的计算(解析版)第2页
     2022-2023 数学华师大版中考考点经典导学 考点22与圆有关的计算(解析版)第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023 数学华师大版中考考点经典导学 考点22与圆有关的计算

    展开

    这是一份2022-2023 数学华师大版中考考点经典导学 考点22与圆有关的计算,文件包含2022-2023数学华师大版中考考点经典导学考点22与圆有关的计算解析版docx、2022-2023数学华师大版中考考点经典导学考点22与圆有关的计算原卷版docx等2份学案配套教学资源,其中学案共26页, 欢迎下载使用。



    真题演练
    一、单选题
    1.(2021·山东潍坊·中考真题)古希腊数学家欧几里得在《几何原本》中记载了用尺规作某种六边形的方法,其步骤是:①在⊙O上任取一点A,连接AO并延长交⊙O于点B;②以点B为圆心,BO为半径作圆弧分别交⊙O于C,D两点;③连接CO,DO并延长分别交⊙O于点E,F;④顺次连接BC,CF,FA,AE,ED,DB,得到六边形AFCBDE.连接AD,EF,交于点G,则下列结论错误的是 .
    A.△AOE的内心与外心都是点GB.∠FGA=∠FOA
    C.点G是线段EF的三等分点D.EF=AF
    2.(2021·山东日照·中考真题)如图,平面图形由直角边长为1的等腰直角和扇形组成,点在线段上,,且交或交于点.设,图中阴影部分表示的平面图形(或)的面积为,则函数关于的大致图象是( )
    A.B.C.D.
    3.(2021·山东东营·中考真题)已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为( )
    A.214°B.215°C.216°D.217°
    4.(2021·山东枣庄·中考真题)如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为( )
    A.π﹣1B.π﹣2C.π﹣3D.4﹣π
    5.(2020·山东德州·中考真题)如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为( )
    A.B.C.D.
    6.(2020·山东日照·中考真题)如图,AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,若CD=6,AE=9,则阴影部分的面积为( )
    A.6π﹣B.12π﹣9C.3π﹣D.9
    7.(2020·山东淄博·中考真题)如图,放置在直线l上的扇形OAB.由图①滚动(无滑动)到图②,再由图②滚动到图③.若半径OA=2,∠AOB=45°,则点O所经过的最短路径的长是( )
    A.2π+2B.3πC.D.+2
    8.(2020·山东东营·中考真题)用一个半径为面积为的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为( )
    A.B.C.D.
    9.(2020·山东聊城·中考真题)如图,有一块半径为,圆心角为的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为( ).
    A.B.C.D.
    10.(2020·山东聊城·中考真题)如图,是的直径,弦,垂足为点.连接,.如果,,那么图中阴影部分的面积是( ).
    A.B.C.D.
    二、填空题
    11.(2021·山东东营·中考真题)如图,在中,E为BC的中点,以E为圆心,BE长为半径画弧交对角线AC于点F,若,,,则扇形BEF的面积为________.
    12.(2021·山东聊城·中考真题)用一块弧长16πcm的扇形铁片,做一个高为6cm的圆锥形工件侧面(接缝忽略不计),那么这个扇形铁片的面积为_______cm2
    13.(2021·山东泰安·中考真题)若为直角三角形,,以为直径画半圆如图所示,则阴影部分的面积为________.
    14.(2021·山东·济宁学院附属中学三模)如图,上下底面为全等的正六边形礼盒,其正视图与侧视图均由矩形构成,正视图中大矩形边长如图所示,侧视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为_________厘米.
    15.(2021·山东牟平·一模)如图,在边长为3的正六边形中,将四边形绕顶点顺时针旋转到四边形处,此时边与对角线重叠,则图中阴影部分的面积是__________.
    三、解答题
    16.(2021·山东潍坊·中考真题)如图,半圆形薄铁皮的直径AB=8,点O为圆心(不与A,B重合),连接AC并延长到点D,使AC=CD,作DH⊥AB,交半圆、BC于点E,F,连接OC,∠ABC=θ,θ随点C的移动而变化.
    (1)移动点C,当点H,B重合时,求证:AC=BC;
    (2)当θ<45°时,求证:BH•AH=DH•FH;
    (3)当θ=45°时,将扇形OAC剪下并卷成一个圆锥的侧面,求该圆锥的底面半径和高.
    17.(2021·山东菏泽·中考真题)在矩形中,,点,分别是边、上的动点,且,连接,将矩形沿折叠,点落在点处,点落在点处.
    (1)如图1,当与线段交于点时,求证:;
    (2)如图2,当点在线段的延长线上时,交于点,求证:点在线段的垂直平分线上;
    (3)当时,在点由点移动到中点的过程中,计算出点运动的路线长.
    18.(2021·山东·济宁学院附属中学二模)如图,在中,,点E在斜边上,以为直径的⊙O与交于点D,平分.
    知识点一 :正多边形与圆
    关键点拨与对应举例
    1.正多边形与圆
    (1)正多边形的有关概念:边长(a)、中心(O)、中心角(∠AOB)、半径(R))、边心距(r),如图所示①.

    (2)特殊正多边形中各中心角、长度比:

    中心角=120° 中心角=90° 中心角=60°,△BOC为等边△
    a:r:R=2:1:2 a:r:R=2::2 a:r:R=2:2
    例:(1) 如果一个正多边形的中心角为72°,那么这个正多边形的边数是5.
    (2)半径为6的正四边形的边心距为,中心角等于90°,面积为72.
    知识点二:与圆有关的计算公式
    2.弧长和
    扇形面积
    的计算
    扇形的弧长l=;扇形的面积S==
    例:已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为3π.
    3.圆锥与
    侧面展开图
    (1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.
    (2)计算公式:
    ,S侧==πrl
    在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.
    例:如图,已知一扇形的半径为3,圆心角为60°,则图中阴影部分的面积为

    相关学案

    2022-2023 数学华师大版中考考点经典导学 考点25概率:

    这是一份2022-2023 数学华师大版中考考点经典导学 考点25概率,文件包含2022-2023数学华师大版中考考点经典导学考点25概率解析版docx、2022-2023数学华师大版中考考点经典导学考点25概率原卷版docx等2份学案配套教学资源,其中学案共26页, 欢迎下载使用。

    2022-2023 数学华师大版中考考点经典导学 考点24视图与投影:

    这是一份2022-2023 数学华师大版中考考点经典导学 考点24视图与投影,文件包含2022-2023数学华师大版中考考点经典导学考点24视图与投影解析版docx、2022-2023数学华师大版中考考点经典导学考点24视图与投影原卷版docx等2份学案配套教学资源,其中学案共18页, 欢迎下载使用。

    2022-2023 数学华师大版中考考点经典导学 考点21与圆有关的位置关系:

    这是一份2022-2023 数学华师大版中考考点经典导学 考点21与圆有关的位置关系,文件包含2022-2023数学华师大版中考考点经典导学考点21与圆有关的位置关系解析版docx、2022-2023数学华师大版中考考点经典导学考点21与圆有关的位置关系原卷版docx等2份学案配套教学资源,其中学案共29页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2022-2023 数学华师大版中考考点经典导学 考点22与圆有关的计算 试卷
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map