所属成套资源:数学华师大版中考考点经典导学
2022-2023 数学华师大版中考考点经典导学 考点06一元二次方程
展开这是一份2022-2023 数学华师大版中考考点经典导学 考点06一元二次方程,文件包含2022-2023数学华师大版中考考点经典导学考点06一元二次方程解析版docx、2022-2023数学华师大版中考考点经典导学考点06一元二次方程原卷版docx等2份学案配套教学资源,其中学案共18页, 欢迎下载使用。
真题演练
一、单选题
1.(2021·山东滨州·中考真题)下列一元二次方程中,无实数根的是( )
A.B.
C.D.
【答案】D
【分析】
计算出各个选项中的Δ的值,然后根据Δ>0有两个不等式的实数根,Δ=0有两个相等实数根,Δ<0无实数根判断即可.
【详解】
解:在x2-2x-3=0中,Δ=b2-4ac=(-2)2-4×1×(-3)=16>0,即该方程有两个不等实数根,故选项A不符合题意;
在x2+3x+2=0中,Δ=b2-4ac=32-4×1×2=1>0,即该方程有两个不等实数根,故选项B不符合题意;
在x2-2x+1=0中,Δ=b2-4ac=(-2)2-4×1×1=0,即该方程有两个相等实数根,故选项C不符合题意;
在x2+2x+3=0中,Δ=b2-4ac=22-4×1×3=-8<0,即该方程无实数根,故选项D符合题意;
故选:D.
2.(2021·山东潍坊·中考真题)若菱形两条对角线的长度是方程x2﹣6x+8=0的两根,则该菱形的边长为( )
A.B.4C.25D.5
【答案】A
【分析】
先求出方程的解,即可得到,根据菱形的性质求出和 ,根据勾股定理求出即可.
【详解】
解:解方程,得,
即,
∵四边形是菱形,
∴,
由勾股定理得,
即菱形的边长为,
故选:.
3.(2021·山东菏泽·中考真题)关于的方程有实数根,则的取值范围是( )
A.且B.且C.D.
【答案】D
【分析】
根据方程有实数根,利用根的判别式来求的取值范围即可.
【详解】
解:当方程为一元二次方程时,
∵关于的方程有实数根,
∴,且 ,
解得,且,
当方程为一元一次方程时,k=1,方程有实根
综上,
故选:D.
4.(2021·山东枣庄·中考真题)在平面直角坐标系中,直线垂直于轴于点(点在原点的右侧),并分别与直线和双曲线相交于点,,且,则的面积为( )
A.或B.或
C.D.
【答案】B
【分析】
设点的坐标为,从而可得,,再根据可得一个关于的方程,解方程求出的值,从而可得的长,然后利用三角形的面积公式即可得.
【详解】
解:设点的坐标为,则,
,
,
,
解得或,
经检验,或均为所列方程的根,
(1)当时,,
则的面积为;
(2)当时,,
则的面积为;
综上,的面积为或,
故选:B.
5.(2021·山东济宁·中考真题)已知,是一元二次方程的两个实数根,则代数式的值等于( )
A.2019B.2020C.2021D.2022
【答案】B
【分析】
根据一元二次方程根的定义得到,则,再利用根与系数的关系得到,然后利用整体代入的方法计算.
【详解】
解:∵m是一元二次方程的实数根,
∴,
∴,
∴,
∵m、n是一元二次方程的两个实数根,
∴,
∴,
故选:B.
6.(2021·山东聊城·中考真题)关于x的方程x2+4kx+2k2=4的一个解是﹣2,则k值为( )
A.2或4B.0或4C.﹣2或0D.﹣2或2
【答案】B
【分析】
把x=-2代入方程即可求得k的值;
【详解】
解:将x=-2代入原方程得到:,
解关于k的一元二次方程得:k=0或4,
故选:B.
7.(2021·山东临沂·中考真题)方程的根是( )
A.B.C.D.
【答案】C
【分析】
利用因式分解法解方程即可得到正确选项.
【详解】
解:∵,
∴,
∴,
∴x+7=0,x-8=0,
∴x1=-7,x2=8.
故选:C.
8.(2021·山东·邹城市看庄中学一模)若关于的一元二次方程有两个不相等的实数根,则的取值范围是( )
A.B.且C.D.且
【答案】B
【分析】
根据一元二次方程的定义和△的意义得到k≠0且△>0,即(-2)2-4×k×(-1)>0,然后解不等式即可得到k的取值范围.
【详解】
解:∵关于x的一元二次方程有两个不相等的实数根,
∴k≠0且△>0,即(-2)2-4×k×(-1)>0,
解得k>-1且k≠0.
∴k的取值范围为k>-1且k≠0.
故选:B.
9.(2021·山东·日照港中学二模)已知关于x的一元二次方程ax2﹣2x﹣1=0有两个不相等的实数根,则二次项系数a的取值范围是( )
A.a>1B.a>﹣2C.a>1且a≠0D.a>﹣1且a≠0
【答案】D
【分析】
由关于x的一元二次方程ax2﹣2x﹣1=0有两个不相等的实数根,即可得判别式△>0且二次项系数a≠0,继而可求得a的范围.
【详解】
解:∵一元二次方程ax2﹣2x﹣1=0有两个不相等的实数根,
∴△=(﹣2)2﹣4×a×(﹣1)>0,且a≠0,
解得:a>﹣1且a≠0,
故选:D.
10.(2021·山东周村·一模)如图,在等边三角形中,,点是边上一点,且,点是边上一动点(,两点均不与端点重合),作,交边于点.若,当满足条件的点有且只有一个时,则的值为( )
A.4B.5C.D.
【答案】D
【分析】
先利用三角形相似的判定定理证明三角形相似,再根据相似的性质建立等量关系,最后把满足条件的点只有一个是,转化成方程的根只有一个,利用根的判别式求解.
【详解】
解:等边三角形,
,
,,
,
,
又,
,
,
若令,则有:,
由题意只有一个解,
,
解得:,
故选:D.
二、填空题
11.(2021·山东济南·中考真题)关于的一元二次方程的一个根是2,则另一个根是__________.
【答案】-3
【分析】
由题意可把x=2代入一元二次方程进行求解a的值,然后再进行求解方程的另一个根.
【详解】
解:由题意把x=2代入一元二次方程得:
,解得:,
∴原方程为,
解方程得:,
∴方程的另一个根为-3;
故答案为-3.
12.(2021·山东枣庄·中考真题)若等腰三角形的一边长是4,另两边的长是关于的方程的两个根,则的值为______.
【答案】8或9
【分析】
分4为等腰三角形的腰长和4为等腰三角形的底边长两种情况,再利用一元二次方程根的定义、根的判别式求解即可得.
【详解】
解:由题意,分以下两种情况:
(1)当4为等腰三角形的腰长时,则4是关于的方程的一个根,
因此有,
解得,
则方程为,解得另一个根为,
此时等腰三角形的三边长分别为,满足三角形的三边关系定理;
(2)当4为等腰三角形的底边长时,则关于的方程有两个相等的实数根,
因此,根的判别式,
解得,
则方程为,解得方程的根为,
此时等腰三角形的三边长分别为,满足三角形的三边关系定理;
综上,的值为8或9,
故答案为:8或9.
13.(2021·山东乳山·模拟预测)如图,,,,…是分别以,,,…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点,,,…均在反比例函数的图象上,则的值为____________.
【答案】20
【分析】
根据点C1的坐标,确定y1,由点C1是等腰直角三角形的斜边中点,可以得到OA1的长,然后再设未知数,表示点C2的坐标,确定y2,代入反比例函数的关系式,建立方程解出未知数,表示点C3的坐标,确定y3,,y100,然后再求和,即可求解.
【详解】
解:如图,过点C1、C2、C3 分别作x轴的垂线,垂足分别为D1、D2、D3,则∠OD1C1=∠OD2C2=∠OD3C3=90°,
∵,,,…是分别以,,,…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,
∴∠OC1D1=∠C1OD1=45°,
∴OD1=C1D1,
∴x1=y1,
∵点在反比例函数的图象上,
∴x1y1=4,
解得:x1=2,y1=2,
即OD1=C1D1=2,
∴OA1=2OD1=4,
设A1D2=a,则C2D2=a,此时C2(4+a,a),代入,得:
a(4+a)=4,解得: 或(舍去),
即,
同理, ,
,
,
∴.
故答案为: .
14.(2021·山东乳山·模拟预测)若方程的两个根是,,则的值为________.
【答案】
【分析】
利用一元二次方程根与系数的关系可得 , ,然后利用完全平方公式的变形可求出,即可求解.
【详解】
解:∵方程的两个根是,,
∴ , ,
∵,
∴ ,
∴ ,
∴ ,
∵,
∴
∴.
故答案为:.
15.(2021·山东省诸城市树一中学三模)商家通常依据“乐观系数准则”确定商品的销售价格,即根据商品的最低销售限价,最高销售限价以及实数确定实际销售价格,这里的被称为乐观系数.经验表明,最佳乐观系数恰好使得,据此可得,最佳乐观系数的值等于__________.
【答案】
【分析】
由得到:,再根据,可得
,再列方程,解方程可得答案;
【详解】
解:由得到:,
即:,
,
,
,
,
解得:,,
,
不合题意,
,
故答案为:.
三、解答题
16.(2021·山东日照·中考真题)某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量(桶)与每桶降价(元)()之间满足一次函数关系,其图象如图所示:
(1)求与之间的函数关系式;
(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?
【答案】(1)y=10x+100;(2)这种消毒液每桶实际售价43元
【分析】
(1)设与之间的函数表达式为,将点、代入一次函数表达式,即可求解;
(2)根据利润等于每桶的利润乘以销售量得关于的一元二次方程,通过解方程即可求解.
【详解】
解:(1)设与销售单价之间的函数关系式为:,
将点、代入一次函数表达式得:,
解得:,
故函数的表达式为:;
(2)由题意得:,
整理,得.
解得,(舍去).
所以.
答:这种消毒液每桶实际售价43元.
17.(2021·山东滨州·中考真题)某商品原来每件的售价为60元,经过两次降价后每件的售价为48.6元,并且每次降价的百分率相同.
(1)求该商品每次降价的百分率;
(2)若该商品每件的进价为40元,计划通过以上两次降价的方式,将库存的该商品20件全部售出,并且确保两次降价销售的总利润不少于200元,那么第一次降价至少售出多少件后,方可进行第二次降价?
【答案】(1)10%;(2)6件
【分析】
(1)根据某商品原来每件的售价为60元,经过两次降价后每件的售价为48.6元,并且每次降价的百分率相同,可设每次降价的百分率为x,从而可以列出方程60(1-x)2=48.6,然后求解即可;
(2)根据题意和(1)中的结果,可以列出相应的不等式,然后即可求得第一次降价出售的件数的取值范围,再根据件数为整数,即可得到第一次降价至少售出多少件后,方可进行第二次降价.
【详解】
解:(1)设该商品每次降价的百分率为x,
60(1-x)2=48.6,
解得x1=0.1,x2=1.9(舍去),
答:该商品每次降价的百分率是10%;
(2)设第一次降价售出a件,则第二次降价售出(20-a)件,
由题意可得,[60(1-10%)-40]a+(48.6-40)×(20-a)≥200,
解得a≥,
∵a为整数,
∴a的最小值是6,
答:第一次降价至少售出6件后,方可进行第二次降价.
18.(2021·山东潍坊·中考真题)(1)计算:;
(2)先化简,再求值:(x,y)是函数y=2x与的图象的交点坐标.
【答案】(1)9;(2)y-x,1或-1.
【分析】
(1)根据实数的运算法则计算;
(2)首先根据图象交点的求法得到x与y的值,再对原式进行化简,然后把x与y的值代入化简后的算式可得解.
【详解】
解:(1)原式=1+9+(1-×18)
=1+9-1=9;
(2)由已知可得:
,
解之可得:或,
∵原式=
=
=y-x,
∴当时,原式=2-1=1;知识点一:一元二次方程及其解法
关键点拨及对应举例
1. 一元二次方程的相关概念
(1)定义:只含有一个未知数,且未知数的最高次数是2 的整式方程.
(2)一般形式:ax2+bx+c=0(a≠0),其中ax2、bx、c分别叫做二次项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常数项.
例:方程是关于x的一元二次方程,则方程的根为-1.
2.一元二次方程的解法
(1)直接开平方法:形如(x+m)2=n(n≥0)的方程,可直接开平方求解.
( 2 )因式分解法:可化为(ax+m)(bx+n)=0的方程,用因式分解法求解.
( 3 )公式法:一元二次方程 ax2+bx+c=0的求根公式为x=(b2-4ac≥0).
(4)配方法:当一元二次方程的二次项系数为1,一次项系数为偶数时,也可以考虑用配方法.
解一元二次方程时,注意观察, 先特殊后一般,即先考虑能否用直接开平方法和因式分解法,不能用这两种方法解时,再用公式法.
例:把方程x2+6x+3=0变形为(x+h)2=k的形式后,h=-3,k=6.
知识点二 :一元二次方程根的判别式及根与系数的关系
3.根的判别式
(1)当Δ=>0时,原方程有两个不相等的实数根.
(2)当Δ==0时,原方程有两个相等的实数根.
(3)当Δ=<0时,原方程没有实数根.
例:方程的判别式等于8,故该方程有两个不相等的实数根;方程的判别式等于-8,故该方程没有实数根.
*4.根与系数的关系
(1)基本关系:若关于x的一元二次方程ax2+bx+c=0(a≠0)有两个根分别为x1、x2,则x1+x2=-b/a,x1x2=c/a.注意运用根与系数关系的前提条件是△≥0.
(2)解题策略:已知一元二次方程,求关于方程两根的代数式的值时,先把所求代数式变形为含有x1+x2、x1x2的式子,再运用根与系数的关系求解.
与一元二次方程两根相关代数式的常见变形:
(x1+1)(x2+1)=x1x2+(x1+x2)+1,x12+x22=(x1+x2)2-2x1x2,等.
失分点警示
在运用根与系数关系解题时,注意前提条件时△=b2-4ac≥0.
知识点三 :一元二次方程的应用
4.列一元二次方程解应用题
(1)解题步骤:①审题;② 设未知数;③ 列一元二次方程;④解一元二次方程;⑤检验根是否有意义;⑥作答.
运用一元二次方程解决实际问题时,方程一般有两个实数根,则必须要根据题意检验根是否有意义.
(2)应用模型:一元二次方程经常在增长率问题、面积问题等方面应用.
①平均增长率(降低率)问题:公式:b=a(1±x)n,a表示基数,x表示平均增长率(降低率),n表示变化的次数,b表示变化n次后的量;
②利润问题:利润=售价-成本;利润率=利润/成本×100%;
③传播、比赛问题:
④面积问题:a.直接利用相应图形的面积公式列方程;b.将不规则图形通过割补或平移形成规则图形,运用面积之间的关系列方程.
相关学案
这是一份2022-2023 数学华师大版中考考点经典导学 考点25概率,文件包含2022-2023数学华师大版中考考点经典导学考点25概率解析版docx、2022-2023数学华师大版中考考点经典导学考点25概率原卷版docx等2份学案配套教学资源,其中学案共26页, 欢迎下载使用。
这是一份2022-2023 数学华师大版中考考点经典导学 考点24视图与投影,文件包含2022-2023数学华师大版中考考点经典导学考点24视图与投影解析版docx、2022-2023数学华师大版中考考点经典导学考点24视图与投影原卷版docx等2份学案配套教学资源,其中学案共18页, 欢迎下载使用。
这是一份2022-2023 数学华师大版中考考点经典导学 考点22与圆有关的计算,文件包含2022-2023数学华师大版中考考点经典导学考点22与圆有关的计算解析版docx、2022-2023数学华师大版中考考点经典导学考点22与圆有关的计算原卷版docx等2份学案配套教学资源,其中学案共26页, 欢迎下载使用。