|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023梅州高三下学期2月总复习质检(一模)数学含答案
    立即下载
    加入资料篮
    2023梅州高三下学期2月总复习质检(一模)数学含答案01
    2023梅州高三下学期2月总复习质检(一模)数学含答案02
    2023梅州高三下学期2月总复习质检(一模)数学含答案03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023梅州高三下学期2月总复习质检(一模)数学含答案

    展开
    这是一份2023梅州高三下学期2月总复习质检(一模)数学含答案,共18页。试卷主要包含了2),已知,则,函数,设是公差为等内容,欢迎下载使用。

    试卷类型:A

    梅州市高三总复习质检试卷(2023.2

     

    本试卷共6页,满分150分,考试用时120分钟。

    注意事项:

    1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需要改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。

    3.考试结束后,将本试卷和答题卡一并交回。

    一、单项选择题:本题共8小题,小题5分,共40.在每小题给出的四个选项,只有一项符合题目要求.

    1.已知是虚数位,则复平面内的应点落在  

    A.第一象 B.第二象限 C.第二象限 D.第四象限

    2.已知集合  

    A. B. C. D.

    3.为了了解小学生的体能情况,抽取了某小学四年级100名学生进行一分钟跳绳次数测试,将所得数据整理后,绘制如下频率分布直方图。根据此图,下列结论中错误的是(   

    A.

    B.估计该小学四年级学生的一分钟跳绳的平均次数超过125

    C.估计该小学四年级学生的一分钟跳绳次数的中位数约119

    D.四年级生一分钟跳绳超过125次以上优秀,则估计该小学四优秀率为35%

    4.已知,则  

    A. B. C. D.

    5.由伦敦著名建筑事务所SteynStudio设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的术品.将如图所示的大教堂外形弧线的一段近似成双曲线下支的部分,此双线两条渐近线方向向下的夹60°,则该双曲线的离心率为  

    A. B. C. D.

    6.若从0123,…910个整数中同时取3个不同的数,则其和为偶数的概率为  

    A. B. C. D.

    7.软件研发公司对软件进行升级,主要是软件程中的序列编辑,编辑序列为,它的第项为,若序列的所有项都是2,且,则  

    A. B. C.. D.

    8.《九章算术》是我国古代著名的数学著作,书中记载有几何体“刍甍”。现有一个刍甍如图所示,底面为正方形,平面,四边形为两个全等的等腰梯形,,且,则此刍的外接球的表面积为(   

    A. B. C. D.

    二、选择题:本题共4小题,每小题5分,共20在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选的得0全科试题免费下载公众号《高中僧课堂》

    9.函数的部分图像如图所示,则下列结论正的是  

    A.

    B.函数的图像关于悳线对称

    C.函数单调递减

    D.函数是偶函数

    10.是公差为的无等差数列的前项和,则下列命题正的是  

    A,则是数列的最大项

    B若数列有最小项,则

    C.若数列是递减数列,则对任意的:,均有

    D.若对任意的,均有,则数列是递增数列

    11.如图,在三棱柱中,为棱的中点;为棱上的动点(含端点),过点作三棱柱的截面,且,则  

    A.线段的最小值 B.上的不存,使得平面

    C.上的存,使得 D.为棱的中点时,

    12.对于定义在区间上的函数,若满足:,都有则称函数为区上的“非减函数”为区上的“非减函数”,,又当时,成立,下列命题中正确的有  

    A.  B.

    C. D.

    三、填空题:本题共4小题,每小题5分,共20.

    13.展开式中的系数为______________.

    14.在平直角坐标系中,点绕着原点顺时针旋转60°得到点,点的横坐标为____________.

    15.、乙、丙三人参加数学知识应用能比赛,他们分别来自ABC三个学校,并分别获得第、二、名:已知:甲不是A校选手;乙不是B校选手;A校选手不是第一名;B校的选手获得第二名;乙不是第三名.根据上述情况,可判断出丙是___________校选手,他获得的是第___________.

    16.函数的最小值为___________.

    四、解答题;本题共6小题,共70.解答应写出文字说明、证明过程或演算步骤.

    17.(本题满分10分)中,内角的对边分别为,已知.

    1.)求内角

    2)点是边上的中点,已知,求面积的大值.

    18.(本小题满分12分)记是正项数列的前n项和,若存在某正数M,都有,则称的前n项和数列有界.从以下三个数列中任选两个

    ;②;③

    分别判断它们的前项和数列是否有界,并给予证明.

    19.(本小题满分12分)如图,在边长为4的正三角形中,为边的中点,过.沿折至的位,连接.

    1为边的一点,若,求赃:

    2)当四的体积取得最大时,求平与平的夹角的余弦值.

    20.(本小题满分12分)甲、乙、丙、丁四支球队进行单循环小赛(每两支队比赛一场),比赛分三轮,每轮两场比赛,第一轮第一场甲乙比赛,第二场丙丁比;第二轮第一比赛,第二场乙丁比赛;第三轮甲对丁和乙对丙两场比赛同一时间开赛,规定:比赛无平局,获胜的球队记3分,的球队记0.三轮比赛结后以积分多少进行排名,积分相同的队伍由抽签决定排名,排名前两位的队出线.假设四支球队每场比赛获概率以近10球队相互之间的场比为参考.

    10场比

    1)三轮比结束后甲的积分记为,求

    2)若二轮比赛结束后,甲、乙、丙、丁四支球队积分分别为3306,求甲队能小组出线的概.

    21.(本小题满分12分)已知函数.

    1)当时,求函数的单调区

    2)若,讨论函数点个数.

    22.(本小题满分12分)已知动圆经过定点,且与圆.

    1)求动圆的轨迹的方程;

    2)设从左到右的交点为点为轨迹上异的动,设线,连结交轨迹于点.直线的斜率分别为.

    i)求证:定值;

    ii)证直线经过轴上的定点,求出该定点的坐标.

     

     

    梅州市高三总复习质检(2023.2

    数学参考答案与评分意见

    一、选择题:本题共8小题,每小题5分,共40.在每小题给出的四个选项中,只有一项是符合题目要求的.

    1

    2

    3

    4

    5

    6

    7

    8

    C

    B

    B

    A

    D

    D

    B

    C

    二、选择题:本题共4小题,每小题5分,共20.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2.

    9

    10

    11

    12

    AB

    BD

    ABD

    ACD

    三、填空题:本题共4小题.每小题5分,共20.

    13.40 14. 15.A;三 16.

    四、解答题:本题共6小题,共70.解答应写出文字说明、证明过程或演算步骤.

    17.(本小题满分10分)

    解:(1)在中,因为

    由正弦定理得:····································································1

    因为,所以,于是有·································································2

    所以,即··········································································3

    因为,所以········································································4

    从而.·········································································5

    2)因为点是边上的中点,所以·······················································6

    对上式两边平分得:·································································7

    因为

    ,即··········································································8

    ,有

    所以,当且仅当时,等号成.···························································9

    因此.·············································································10

    面积的大值为.

    18.(本小题满分12分)

    解:数列①②的前项和数列有界,的前项和数列无界,证明如下:

    其前···································································2

    因为,所以,则····································································4

    所以存在正数1

    项和数列有界.

    ,当时,······································································2

    其前项和

    ·················································································4

    因为,所以,则····································································5

    所以存在正数2

    项和数列有界.····································································6

    ,其前项和为

    ·················································································2

    对于任意正数,取(其中表示不大于的最大整数),

    ···············································································4

    因此项和数不是有界的.····························································6

    19.本小题满分12分)

    1)证明连接

    因为在正三角形中,

    又因为,所以······································································1

    平面平面

    所以平面··········································································2

    又有,且,所以

    平面平面,所以平面.·······························································3

    所以平面平面······································································4

    因此平面.···········································································5

    2)解:因为,又因为的面积为定值,

    所以当到平面的距离大时,面体的体积有最大值,········································6

    因为平面

    所以平面

    因为平面,所以平面平面

    时,平面平面

    所以平面,即在翻折过程中,点到平面大距离是

    因此四面体的体积取得最大值时,必有平面.·················································7

    如图,以点为原点,轴,轴,轴,建立空间直接坐标系,

    易知

    ·············································································8

    因为平面

    以平面的法量为·································································9

    设平面的法向量为

    ,令得:

    所以············································································10

    .·················································································11

    所以平面与平面的夹角(锐角)的余弦值为.················································12

    20.(本小题满分12分)

    解:(1)设甲的第场比赛获记为23·············································1

    则有···············································································2

    ··················································································3

    .··················································································4

    2)分以下三种情况:

    i)若第三轮甲胜丁,另一场比赛乙胜丙,

    则甲、乙、丙、丁四个球队积分变为6606············································5

    此时甲、乙、丁三支球队积分相同,要抽签决定排名,甲抽中前两名的概率为

    所以这种情况下,甲出线的概率为······················································6

    ii)若第三轮甲胜丁,另一场比赛乙输丙,

    则甲、乙、丙、丁积分变为6336···················································7

    此时甲一定出线,甲出线的概率为······················································8

    iii)若第三轮甲输丁,另一场比赛乙输丙.

    则甲、乙、丙、丁积分3339···················································9

    此时甲、乙、丙三支球队要抽签决定排名,甲抽到第二名的概率为

    所以这种情况下,甲出线的概率为.·······················································10

    综上,甲出线的概率为.································································12

    21.(本小题满分12分)

    解:(1)首先函数的定义域为,当时,

    .················································································1

    ,得··········································································2

    所以当时,.··································································3

    ,减区间为.·····························································4

    2

    ,得··········································································5

    以当时,:当时,.

    因此上单调递增,在上单调递减.······················································6

    因为当时,

    .

    所以上不存在零点.··································································8

    上,由单调性知:,分以下三种悄况讨论:

    i)若,在,即上不存在零点;·······················································9

    ii)若,有

    此时有唯一零点··································································10

    iii)若,有,而

    上各有一个零点.·······························································11

    综上:(i)当时,止不存在零点;

    ii)当上存在一个零点;

    iii)当上存在两个零点.·······················································12

    22.(本小题满分12分)

    1)解:设动圆的半径为由题意,得:

    ···············································································1

    .················································································2

    动点的轨迹是以为焦点,长轴长为4.············································3

    因此轨迹方程为.······································································4

    2)(i)证法一:设.

    由题可知,

    ·············································································5

    ,于是··········································································6

    所以·············································································7

    ,则

    因此为定值.·········································································8

    证法二:设.由题可知,

    则直线的方程为.

    ,得···········································································5

    所以,即

    .················································································6

    所以.··············································································7

    为定值.··········································································8

    证法三:设.

    由题可知,,财.

    ········································································5

    所以,即··········································································6

    ,又···········································································7

    所以为定值.·········································································8

    解:(ii)法一:设直线的方程为.

    ,得···········································································9

    所以.·············································································10

    由(i)可知,,即

    化简得:解得(舍去),···························································11

    真线的方程

    因此直线经过定点.···································································12

    法二:设

    当直线的斜率存在时,设直线的方程

    ,得

    所以···············································································9

    由(i)已知,,即:

    得:,解得(舍去).····························································10

    所以直线的方程为

    故直线经过定点.·····································································11

    当线的斜不存在时,.

    由(i)知,,即:.

    ,所以,解得.

    所以直线的方程为,故直线经过定.

    综上,直线经过定点.·································································12

    法三:设.由题可知,,则直线的方程为.

    ,得

    所以,即,则

    所以,同理,得.·····································································10

    ,即时,

    直线的方程为,此时直线经过定点.·······················································11

    ,即时,

    直线的方程为

    ,此时线经过定点.

    综上,线经过定.·································································12

     

     

     


     

    相关试卷

    2023届广东省梅州市高三总复习质检(二模) 数学: 这是一份2023届广东省梅州市高三总复习质检(二模) 数学,共7页。

    2023届广东省梅州市高三总复习质检(二模)数学PDF版含答案: 这是一份2023届广东省梅州市高三总复习质检(二模)数学PDF版含答案,文件包含2023届广东省梅州市高三总复习质检二模数学答案pdf、2023届广东省梅州市高三总复习质检二模数学pdf等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。

    2023届广东省梅州市高三总复习质检(一模)数学试卷 PDF版: 这是一份2023届广东省梅州市高三总复习质检(一模)数学试卷 PDF版,文件包含扫描件_数学参考答案与评分意见pdf、2023届广东省梅州市高三总复习质检一模数学试卷pdf等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023梅州高三下学期2月总复习质检(一模)数学含答案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map