|教案下载
终身会员
搜索
    上传资料 赚现金
    班海数学北师大版七下-6.3等可能事件的概率【优质教案】
    立即下载
    加入资料篮
    班海数学北师大版七下-6.3等可能事件的概率【优质教案】01
    班海数学北师大版七下-6.3等可能事件的概率【优质教案】02
    班海数学北师大版七下-6.3等可能事件的概率【优质教案】03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版七年级下册3 等可能事件的概率教案

    展开
    这是一份北师大版七年级下册3 等可能事件的概率教案,共12页。教案主要包含了教学目的,教学重点,教学难点,教学过程,教学流程等内容,欢迎下载使用。

    等可能事件的概率

    【教学目的】
    通过等可能事件概率的讲解,使学生得到一种较简单的、较现实的计算事件概率的方法。
    1.了解基本事件;等可能事件的概念;
    2.理解等可能事件的概率的定义,能运用此定义计算等可能事件的概率
    【教学重点】
    熟练、准确地应用排列、组合知识,是顺利求出等可能事件概率的重要方法。

    1.等可能事件的概率的意义:如果在一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是 ,如果事件A包含m个结果,那么事件A的概率P(A)= 

    2.等可能事件A的概率公式的简单应用。
    【教学难点】
    等可能事件概率的计算方法。试验中出现的结果个数n必须是有限的,每个结果出现的可能性必须是相等的。
    【教学过程】
    一、 复习提问
     1.下面事件:在标准大气压下,水加热到800C时会沸腾。掷一枚硬币,出现反面。实数的绝对值不小于零;是不可能事件的有
    A.          B.            C. ①②          D.
    2.下面事件中:连续掷一枚硬币,两次都出现正面朝上;异性电荷,相互吸引;在标准大气压下,水在10C结冰。是随机事件的有
      A.         B.            C.          D.②③
    3.下列命题是否正确,请说明理由
    ①“当xR时,sinx+cosx1是必然事件;
    ②“当xR时,sinx+cosx1是不可能然事件;
    ③“当xR时,sinx+cosx<2是随机事件;
    ④“当xR时,sinx+cosx<2是必然事件;
    3.某人进行打靶练习,共射击10次,其中有2次击中10环,有3次击中9环,有4次击中8环,有1次未中靶,试计算此人中靶的频率,假设此人射击1次,问中靶的概率大约是多少?
    4.上抛一个刻着1、2、3、4、5、6字样的正六面体方块出现字样为3的事件的概率是多少?出现字样为0的事件的概率为多少?上抛一个刻着六个面都是P字样的正方体方块出现字样为P的事件的概率为多少?
    二、 新课引入
    随机事件的概率,一般可以通过大量重复试验求得其近似值。但对于某些随机事件,也可以不通过重复试验,而只通过对一次试验中可能出现的结果的分析来计算其概率。这种计算随机事件概率的方法,比经过大量重复试验得出来的概率,有更简便的运算过程;有更现实的计算方法。这一节课程的学习,对有关排列、组合的基本知识和基本思考问题的方法有较高的要求。
    三、 进行新课
    上面我们已经说过:随机事件的概率,一般可以通过大量重复试验求得其近似值。但对于某些随机事件,也可以不通过重复试验,而只通过对一次试验中可能出现的结果的分析来计算其概率。
    例如,掷一枚均匀的硬币,可能出现的结果有:正面向上,反面向上。由于硬币是均匀的,可以认为出现这两种结果的可能发生是相等的。即可以认为出现正面向上的概率是1/2,出现反面向上的概率也是1/2。这与前面表1中提供的大量重复试验的结果是一致的。
    又如抛掷一个骰子,它落地时向上的数的可能是情形1,2,3,4,5,6之一。即可能出现的结果有6种。由于骰子是均匀的,可以认为这6种结果出现的可能发生都相等,即出现每一种结果的概率都是1/6。这种分析与大量重复试验的结果也是一致的。
    现在进一步问:骰子落地时向上的数是3的倍数的概率是多少?
    由于向上的数是3,6这2种情形之一出现时,向上的数是3的倍数这一事件(记作事件A)发生。因此事件A的概率P(A)=2/6=1/3
    定义1 基本事件:一次试验连同其中可能出现的每一个结果称为一个基本事件。
    通常此试验中的某一事件A由几个基本事件组成。如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等。那么每一个基本的概率都是 。如果某个事件A包含的结果有m个,那么事件A的概率P(A)= 。亦可表示为P(A)= 
    四、 课堂举例:
    【例题1】有10个型号相同的杯子,其中一等品6个,二等品3个,三等品1个.从中任取1个,取到各个杯子的可能性是相等的。由于是从10个杯子中任取1个,共有10种等可能的结果。又由于其中有6个一等品,从这10个杯子中取到一等品的结果有6种。因此,可以认为取到一等品的概率是 。同理,可以认为取到二等品的概率是3/10,取到三等品的概率是 。这和大量重复试验的结果也是一致的。
    【例题2】从52张扑克牌中任意抽取一张(记作事件A),那么不论抽到哪一张都是机会均等的,也就是等可能性的,不论抽到哪一张花色是红心的牌(记作事件B)也都是等可能性的;又不论抽到哪一张印有A字样的牌(记作事件C)也都是等可能性的。所以各个事件发生的概率分别为P(A)= =1,P(B)= = ,P(C)= = 
    在一次试验中,等可能出现的n个结果组成一个集合I,这n个结果就是集合I的n个元素。各基本事件均对应于集合I的含有1个元素的子集,包含m个结果的事件A对应于I的含有m个元素的子集A.因此从集合的角度看,事件A的概率是子集A的元素个数(记作card(A))与集合I的元素个数(记作card(I))的比值。即P(A)= = 
    例如,上面掷骰子落地时向上的数是3的倍数这一事件A的概率P(A)= = = 
    【例3】  先后抛掷两枚均匀的硬币,计算:
        (1)两枚都出现正面的概率;
        (2)一枚出现正面、一枚出现反面的概率。
        分析:抛掷一枚硬币,可能出现正面或反面这两种结果。因而先后抛掷两枚硬币可能出现的结果数,可根据乘法原理得出。由于硬币是均匀的,所有结果出现的可能性都相等。又在所有等可能的结果中,两枚都出现正面这一事件包含的结果数是可以知道的,从而可以求出这个事件的概率。同样,一枚出现正面、一枚出现反面这一事件包含的结果数是可以知。道的,从而也可求出这个事件的概率。
     解:由乘法原理,先后抛掷两枚硬币可能出现的结果共有2×2=4种,且这4种结果出现的可能性都相等。
     (1)记抛掷两枚硬币,都出现正面为事件A,那么在上面4种结果中,事件A包含的结果有1种,因此事件A的概率
    P(A)=1/4
    答:两枚都出现正面的概率是1/4。
     (2)记抛掷两枚硬币,一枚出观正面、一枚出现反面为事件B。那么事件B包含的结果有2种,因此事件B的概率
    P(B)=2/4=1/2
    答:一枚出现正面、一枚出现反面的概率是1/2。
    【例4】  在100件产品中,有95件合格品,5件次品。从中任取2件,计算:
    (1)2件都是合格品的概率;
    (2)2件都是次品的概率;
    (3)1件是合格品、1件是次品的概率。
    分析:从100件产品中任取2件可能出现的结果数,就是从、100个元素中任取2个的组合数。由于是任意抽取,这些结果出现的可能性都相等。又由于在所有产品中有95件合格品、5件次品,取到2件合格品的结果数,就是从95个元素中任取2个的组合数;取到2件次品的结果数,就是从5个元素中任取2个的组合数;取到1件合格品、1件次品的结果数,就是从95个元素中任取1个元素的组合数与从5个元素中任取1个元素的组合数的积,从而可以分别得到所求各个事件的概率。
    解:(1)从100件产品中任取2件,可能出现的结果共有 种,且这些结果出现的可能性都相等。又在 种结果中,取到2件合格品的结果有 种。记任取2件,都是合格品为事件A,那么事件A的概率
    P(A)=  /  =893/990
    答:2件都是合格品的概率为893/990
    (2)记任取2件,都是次品为事件B。由于在 种结果中,取到2件次品的结果有C52种,事件B的概率
    P(B)=  /  =1/495
    答:2件都是次品的概率为1/495
    (3)记任取2件,1件是合格品、I件是次品为C。由于在 种结果中,取到1件合格品、l件次品的结果有  种,事件C的概率
    P(C)=   /  =19/198
    答:1件是合格品、1件是次品的概率为19/198
    【例5】  某号码锁有6个拨盘,每个拨盘上有从0到9共十个数字,当6个拨盘上的数字组成某一个六位数字号码(开锁号码)时,锁才能打开。如果不知道开锁号码,试开一次就把锁打开的概率是多少?
    分析:号码锁每个拨盘上的数字,从0到9共有十个。6个拨盘上的各一个数字排在起,就是一个六位数字号码。根据乘法原理,这种号码共有10的6次方个。由于不知道开锁号码,试开时采用每一个号码的可能性都相等。又开锁号码只有一个,从而可以求出试开一次就把锁打开的概率。
    解:号码锁每个拨盘上的数字有10种可能的取法。根据乘法原理,6个拨盘上的数字组成的六位数字号码共有10的6次方个。又试开时采用每一个号码的可能性都相等,且开锁号码只有一个,所以试开一次就把锁打开的概率
    P=1/1000000
    答:试开一次就把锁打开的概率是1/1000000
    五、课堂小结:用本节课的观点求随机事件的概率时,首先对于在试验中出现的结果的可能性认为是相等的;其次是对于通过一个比值的计算来确定随机事件的概率,并不需要通过大量重复的试验。因此,从方法上来说这一节课所提到的方法,要比上一节所提到的方法简便得多,并且更具有实用价值。
    六、课堂练习 
    1.(口答)在40根纤维中,有12根的长度超过30毫米。从中任取1根,取到长度超过30毫米的纤维的概率是多少?
    2.在10支铅笔中,有8支正品和2支副品。从中任取2支,恰好都取到正品的概率是多少?
    七、布置作业:课本

     

     

    游戏中的概率

    运用概知识解释游戏是否公平合理.

    【教学难点】

    设计公平合理的游戏规则.

    【教学流程】

     

    创设情境

     

    教师活动

    学生活动

    设计意图

    1、从三人中推选一人参加某项活动,该怎么办?

    学生独立思考后发表自己的看法,其他学生补充.

    以同学的亲身经历为切入口,从现实生活中发现并提出问题.

    2、启发学生回答.

    回答自己的想法.

    尝试用数学的方法来决定这件事情.

    3、组织抽签游戏.

    三名候选人抽签.

    抽签过程烘托课堂气氛,激发学生学习热情.

    4、提出问题:抽签方法合理吗?

    表明自己观点.

    让学生大胆猜想,引发思考,展开课堂活动.

     

    二、探索活动

    (一)探究新知

     

    活动一:

    教师活动

    学生活动

    设计意图

    1、问题的提出(媒体展示):

    现有3张相同的小纸条,分别写有A、B1、B2,把3张纸条放在盒子中摇匀,3名同学去摸纸条,摸到A表示中签.这种抽签的方法合理吗?

    学生独立思考,再与同桌交流.

    把实际问题转化为数学问题,让学生独立思考,使每个同学都尝试解决问题.

    2、交流与发现:

    抽签方法合理的依据.

    学生发表观点.

    寻求检验猜想的方法,培养理性思维.

    3、教师板书:

    分别求3人中签的概率.

    学生回答.

    教师示范,让学生学会有条理地表达

    4、思考与交流:

    现在假如要从3名同学中选2名同学去呢?

    这种方法还公平吗?为什么.

    学生回答.

    强化由中签概率相等判断抽签合理而获得的解决问题的经验.

     

    (二)迁移延伸

    活动二:

    教师活动

    学生活动

    设计意图

    1、运用迁移(媒体展示):

    小明、小丽两人设计了转盘游戏(教师在黑板上贴上两个转盘),把两个可以自由转动的均匀转盘分别二等份,分别标上字母A、B,规则如下:

    (1)分别转动转盘甲、乙,两个转盘停止后,指针将指向某个字母;

    (2)如果指针指向相同的字母,那么小明就得一分;如果指针指向不同的字母,那么小丽就得一分.做10次,得分高者为赢家.

    这个游戏对双方公平吗?请说明你的理由.

    独立思考,请同学板演.

    运用双方获胜的概率相等判断游戏对双方公平,体会概率是解决实际问题的重要工具.

    通过情境的变化,巩固活动成果,提高学生运用概率知识解决实际问题的能力,让学生体验成功的喜悦,增强学好数学的自信心.

    2、拓展延伸(媒体展示)

    小明、小丽两人设计了转盘游戏,把两个可以自由转动的均匀转盘甲二等份,乙三等份,并在各个扇形区内标上数字,规则如下:

    (1)分别转动转盘甲、乙,两个转盘停止后,指针将指向某个数字;

    (2)如果指针指向的数字之积是奇数,那么小明就得一分,如果积是偶数,那么小丽就得一分.做10次,得分高者为赢家.

    这个游戏对双方公平吗? 如果你认为规则不公平,请你设计使游戏对双方公平的方案.

    组织小组活动.教师巡视,并参加到学生的讨论之中.组织小组代表交流、评价.

    小组讨论,推选代表在全班交流,其他小组评价.

    引导学生积极参与问题的讨论,从交流中获益,体会在解决问题的过程中与他人合作的重要性。

    请各小组代表发言,并请其他小组评价,让每个同学从交流中获得更大的发展,并培养同学们尊重与理解他人见解的良好习惯.

    三、整理反思

    教师活动

    学生活动

    设计意图[

    1、通过本节课的学习,你对游戏公平又有怎样的认识?

    学生口答.

     

    直击本节课的数学本质,夯实基础知识,为进一步解决实际问题奠定基础.

    2、你对本节课的知识还存在哪些疑惑吗?

    学生思考交流.

    进一步激起学生的求知欲,为后续学习作铺垫, 师生关系进一步融洽.

     

     

     

     

     

     

    感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!

     

     

     

     

     

    相关教案

    数学七年级下册第五章 生活中的轴对称1 轴对称现象教案设计: 这是一份数学七年级下册第五章 生活中的轴对称1 轴对称现象教案设计,共4页。教案主要包含了    教学目标,    教材分析,     教学课型,     教学方法,    教具,教学过程,作业等内容,欢迎下载使用。

    北师大版七年级下册4 用尺规作角教案: 这是一份北师大版七年级下册4 用尺规作角教案,共5页。教案主要包含了问题的提出,.新课等内容,欢迎下载使用。

    初中数学北师大版七年级下册7 整式的除法教学设计: 这是一份初中数学北师大版七年级下册7 整式的除法教学设计,共10页。教案主要包含了复习回顾,情境引入,探究新知,例题讲解,课堂练习,处理情境问题,知识小结,布置作业等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        班海数学北师大版七下-6.3等可能事件的概率【优质教案】
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map