- 山东省2018年东营市中考数学试卷【含答案】 试卷 0 次下载
- 山东省2020年东营市中考数学试卷【含答案】 试卷 0 次下载
- 山东省2021年东营市中考数学试卷【含答案】 试卷 0 次下载
- 山东省2022年东营市中考数学试卷【含答案】 试卷 0 次下载
山东省2019年东营市中考数学试卷【含答案】
展开2019年东营市中考数学
一、选择题:本大题共10小题,每小题选对得3分
1.﹣2019的相反数是( )
A.﹣2019 B.2019 C.﹣ D.
2.下列运算正确的是( )
A.3x3﹣5x3=﹣2x B.8x3÷4x=2x
C.= D.+=
3.将一副三角板(∠A=30°,∠E=45°)按如图所示方式摆放,使得BA∥EF,则∠AOF等于( )
A.75° B.90° C.105° D.115°
4.下列图形中,是轴对称图形的是( )
A. B. C. D.
5.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x,负的场数为y,则可列方程组为( )
A. B. C. D.
6.从1,2,3,4中任取两个不同的数,分别记为a和b,则a2+b2>19的概率是( )
A. B. C. D.
7.如图,在Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于D、E两点,作直线DE交AB于点F,交BC于点G,连结CF.若AC=3,CG=2,则CF的长为( )
A. B.3 C.2 D.
8.(3分)甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是( )
A.乙队率先到达终点 B.甲队比乙队多走了126米
C.在47.8秒时,两队所走路程相等 D.从出发到13.7秒的时间段内,乙队的速度慢
9.(3分)如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为( )
A.3 B. C.3 D.3
10.(3分)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是( )
A.①②③④ B.①②③ C.①②④ D.③④
二、填空题:本大题共8小题,共28分.
11.2019年1月12日,“五指山”舰正式入列服役,是我国第六艘071型综合登陆舰艇,满载排水量超过20000吨,20000用科学记数法表示为 .
12.)因式分解:x(x﹣3)﹣x+3= .
13.东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如表所示,则在本次调查中,学生阅读时间的中位数是 .
时间(小时) | 0.5 | 1 | 1.5 | 2 | 2.5 |
人数(人) | 12 | 22 | 10 | 5 | 3 |
14.已知等腰三角形的底角是30°,腰长为2,则它的周长是 .
15.不等式组的解集为 .
16.如图,AC是⊙O的弦,AC=5,点B是⊙O上的一个动点,且∠ABC=45°,若点M、N分别是AC、BC的中点,则MN的最大值是 .
17.如图,在平面直角坐标系中,△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,点C与点E关于x轴对称,则点D的坐标是 .
18.如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过l1上的点A1(1,)作x轴的垂线交l2于点A2,过点A2作y轴的垂线交l1于点A3,过点A3作x轴的垂线交l2于点A4,…依次进行下去,则点A2019的横坐标为 .
三、解答题:本大题共7小题,共62分.
19.(1)计算:()﹣1+(3.14﹣π)0+|2﹣|+2sin45°﹣;
(2)化简求值:(﹣)÷,当a=﹣1时,请你选择一个适当的数作为b的值,代入求值.
20.为庆祝建国70周年,东营市某中学决定举办校园艺术节.学生从“书法”、“绘画”、“声乐”、“器乐”、“舞蹈”五个类别中选择一类报名参加.为了了解报名情况,组委会在全校随机抽取了若干名学生进行问卷调查,现将报名情况绘制成如图所示的不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)在这次调查中,一共抽取了多少名学生?
(2)补全条形统计图;
(3)在扇形统计图中,求“声乐”类对应扇形圆心角的度数;
(4)小东和小颖报名参加“器乐”类比赛,现从小提琴、单簧管、钢琴、电子琴四种乐器中随机选择一种乐器,用列表法或画树状图法求出他们选中同一种乐器的概率.
21.如图,AB是⊙O的直径,点D是AB延长线上的一点,点C在⊙O上,且AC=CD,∠ACD=120°.
(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,求图中阴影部分的面积.
22.如图,在平面直角坐标系中,直线y=mx与双曲线y=相交于A(﹣2,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是2.
(1)求m、n的值;(2)求直线AC的解析式.
23.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?
24.如图1,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D、E分别是边BC、AC的中点,连接DE.将△CDE绕点C逆时针方向旋转,记旋转角为α.
(1)问题发现
①当α=0°时,= ;②当α=180°时,= .
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.
(3)问题解决
△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.
25.已知抛物线y=ax2+bx﹣4经过点A(2,0)、B(﹣4,0),与y轴交于点C.
(1)求这条抛物线的解析式;
(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;
(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.
参考答案
1.B.2.C.3.A.4.D.5.A.6.D.7.A.8.C.9.D.10.B.
11.2×104.12.(x﹣1)(x﹣3)13.1.14.6+4.15.﹣7≤x<1.
16..17.(,0).18.﹣31009.
19.解:(1)原式=2019+1++2×﹣2=2020+2﹣+﹣2=2020;
(2)原式=•==,
当a=﹣1时,取b=2,原式==1.
20.解:(1)∵被抽到的学生中,报名“书法”类的人数有20人,
占整个被抽取到学生总数的10%,
∴在这次调查中,一共抽取了学生为:20÷10%=200(人);
(2)被抽到的学生中,报名“绘画”类的人数为:200×17.5%=35(人),
报名“舞蹈”类的人数为:200×25%=50(人);
补全条形统计图如下:(3)被抽到的学生中,报名“声乐”类的人数为70人,
∴扇形统计图中,“声乐”类对应扇形圆心角的度数为:×360°=126°;
(4)设小提琴、单簧管、钢琴、电子琴四种乐器分别为A、B、C、D,
画树状图如图所示:共有16个等可能的结果,小东和小颖选中同一种乐器的结果有4个,
∴小东和小颖选中同一种乐器的概率为=.
21.(1)证明:连接OC.
∵AC=CD,∠ACD=120°,
∴∠A=∠D=30°.
∵OA=OC,∴∠ACO=∠A=30°.
∴∠OCD=∠ACD﹣∠ACO=90°.即OC⊥CD,∴CD是⊙O的切线.
(2)解:∵∠A=30°,∴∠COB=2∠A=60°.∴S扇形BOC=,
在Rt△OCD中,CD=OC,
∴,∴,
∴图中阴影部分的面积为.
22.解:(1)∵直线y=mx与双曲线y=相交于A(﹣2,a)、B两点,
∴点A与点B关于原点中心对称,∴B(2,﹣a),∴C(2,0);
∵S△AOC=2,∴×2×a=2,解得a=2,∴A(﹣2,2),
把A(﹣2,2)代入y=mx和y=得﹣2m=2,2=,解得m=﹣1,n=﹣4;
(2)设直线AC的解析式为y=kx+b,
∵直线AC经过A、C,∴,解得∴直线AC的解析式为y=﹣x+1.
23.解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200﹣x)]个,
依题意,得:(x﹣100)[300+5(200﹣x)]=32000,
整理,得:x2﹣360x+32400=0,解得:x1=x2=180.180<200,符合题意.
答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.
24.解:(1)①当α=0°时,
∵Rt△ABC中,∠B=90°,∴AC===2,
∵点D、E分别是边BC、AC的中点,∴AE=AC=,BD=BC=1,∴=.
②如图1﹣1中,
当α=180°时,可得AB∥DE,∵=,∴==.故答案为:①,②.
(2)如图2,
当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,
又∵==,∴△ECA∽△DCB,∴==..
(3)①如图3﹣1中,当点E在AB的延长线上时,
在Rt△BCE中,CE=,BC=2,
∴BE===1,∴AE=AB+BE=5,∵=,∴BD==.
②如图3﹣2中,当点E在线段AB上时,
易知BE=1,AE=4﹣1=3,
∵=,∴BD=,综上所述,满足条件的BD的长为或.
25.解:(1)∵抛物线y=ax+bx﹣4经过点A(﹣2,0),B(4,0),
∴,解得,∴抛物线解析式为y=x2+x﹣4;
(2)如图1,连接OP,设点P(x,),其中﹣4<x<0,四边形ABPC的面积为S,由题意得C(0,﹣4),
∴S=S△AOC+S△OCP+S△OBP
=+,
=4﹣2x﹣x2﹣2x+8,
=﹣x2﹣4x+12,
=﹣(x+2)2+16.
∵﹣1<0,开口向下,S有最大值,
∴当x=﹣2时,四边形ABPC的面积最大,此时,y=﹣4,即P(﹣2,﹣4).
因此当四边形ABPC的面积最大时,点P的坐标为(﹣2,﹣4).
(3),∴顶点M(﹣1,﹣).
如图2,连接AM交直线DE于点G,此时,△CMG的周长最小.
设直线AM的解析式为y=kx+b,且过点A(2,0),M(﹣1,﹣),
∴,∴直线AM的解析式为y=﹣3.
在Rt△AOC中,=2.
∵D为AC的中点,∴,
∵△ADE∽△AOC,∴,∴,∴AE=5,∴OE=AE﹣AO=5﹣2=3,∴E(﹣3,0),
由图可知D(1,﹣2)设直线DE的函数解析式为y=mx+n,
∴,解得:,∴直线DE的解析式为y=﹣﹣.
∴,解得:,∴G().
日期:2019/8/3 9:36:48;用户:学无止境;邮箱:419793282@qq.com;学号:7910509
2023年山东省东营市中考数学试卷: 这是一份2023年山东省东营市中考数学试卷,共34页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省东营市中考数学试卷(含答案解析): 这是一份2023年山东省东营市中考数学试卷(含答案解析),共23页。试卷主要包含了 −2的相反数是, 下列运算结果正确的是等内容,欢迎下载使用。
山东省2022年东营市中考数学试卷【含答案】: 这是一份山东省2022年东营市中考数学试卷【含答案】,共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。