考点09 一次函数的应用-备战2023年中考数学一轮复习考点帮(全国通用
展开考点09 一次函数的应用
一次函数的实际应用在中考中更多的是以简答题的形式出题,选择题、填空题多考察一次函数图象的理解和信息提取,并且多考行程类实际应用题。简答题在出题时也多和方程、不等式结合,考察对象的方案设计和决策等。在考生复习此考点时,需要多注意一次函数图象具体意义的,熟练掌握根据已知条件确定一次函数的表达式的方法,并能根据一次函数的性质解决简单的实际问题。
一、 一次函数图象信息类问题
二、 利用一次函数进行方案设计与决策
三、 一次函数与几何的结合问题
考向一:一次函数图象信息类问题
一. 一次函数图象与性质的应用解题要点:
1. 明确题目中图象的横、纵坐标表示的意义;
2. 理解并能准确应用图象中的拐点的意义;
3. 理解函数图象的变化趋势、倾斜程度各表示什么意义;
二.分段函数图象问题解题要点:
1.读懂每段图象的意义,从图象中获取信息,
2.注意图象中的一些特殊点的实际意义;
1.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是( )
A.两车同时到达乙地
B.轿车行驶1.3小时时进行了提速
C.货车出发3小时后,轿车追上货车
D.两车在前80千米的速度相等
2.已知张老师家、超市、书店在同一条直线上.下面的图象反应的过程是:张老师晚饭后从家里散步到超市,在超市停留了一会儿后又去书店看书,看会儿书觉得有点晚了,就快步走回家.图中x表示张老师离开家的时间,y表示张老师离开家的距离.根据图象提供的信息,下列说法错误的是( )
A.张老师家离超市1.5km
B.张老师在书店停留了30min
C.张老师从家里到超市的平均速度与从超市到书店的平均速度是相等的
D.张老师从书店到家的平均速度是10km/h
3.公路旁依次有A,B,C三个村庄,小明和小红骑自行车分别从A村、B村同时出发匀速前往C村(到了C村不继续往前骑行,也不返回),如图所示,l1,l2分别表示小明和小红与B村的距离s(km)和骑行时间t(h)之间的函数关系,下列结论:
①A,B两村相距12km;
②小明每小时比小红多骑行8km;
③出发1.5h后两人相遇;
④图中a=1.65.
其中正确的是( )
A.②④ B.①③④ C.①②③ D.①②③④
4.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图所示:
(1)根据图象,求出y1,y2关于x的函数关系式.
(2)若设两车间的距离为S(km),请写出S关于x的函数关系式.
(3)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.
考向二:利用一次函数进行方案设计与决策
一次函数与方程(组)、不等式的实际应用解题要点:
1. 利用图象交点的意义及图象关系将实际问题转化为一次函数问题
2. 在解题中要分清图象所对应的实际问题中的参量,同时要注意自变量的取值范围
3. 利用一次函数的性质进行方案设计与决策,一般先求出函数表达式,结合不等式求出自变量的取值范围,然后再利用函数的增减性或函数图象进行决策。
1.电信公司手机的收费标准有A,B两类,已知每月应缴费用S(元)与通话时间t(分)之间的关系如图所示.当通话时间为200分钟时,按这两类收费标准缴费的差为( )
A.10元 B.15元 C.20元 D.30元
2.某企业生产并销售某种产品,整理出该商品在第x(1≤x≤90)天的售价y与x函数关系如图所示,已知该商品的进价为每件30元,第x天的销售量为(100﹣x)件.
(1)试求出售价y与x之间的函数关系式;
(2)请求出该商品在销售过程中的最大利润.
3.两架无人机A、B准备在120米高空完成“美丽贤城”拍摄任务,无人机A从海拔10米处以5米/秒的速度匀速上升,无人机B从海拔30米处以m米/秒匀速上升.如果这两架无人机同时出发,经过10秒后都位于同一海拔高度n米.设无人机海拔高度y米与时间x秒的关系如图所示.
(1)m= ,n= ;
(2)求无人机B在上升过程中,海拔高度y米与时间x秒之间的函数关系式;
(3)当两架无人机都上升了20秒时,无人机A比无人机B高多少米?
4.冬天是吃羊肉的好时节.白萝卜炖羊肉,不仅鲜美可口,对慢性支气管炎、脾虚积食等病症有补益效果.所以一到冬天,羊肉就是各大超市的畅销品.某超市在冬至这天,购进了大量羊腿和羊排.顾客甲买了4斤羊腿,3斤羊排,一共花了272元;顾客乙买了2斤羊腿,1斤羊排,一共花了116元.
(1)羊腿和羊排的售价分别是每斤多少元?
(2)第二天进货时,超市老板根据前一天的销售情况,决定购进羊腿和羊排共180斤,且羊腿的重量不少于120斤,若在售价不变的情况下,每斤羊腿可盈利6元,每斤羊排可盈利8元,问超市老板应该如何进货才能使得这批羊肉卖完时获利最大?最大利润是多少?
5.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一家国有出租车公司的其中一家签订月租车合同.设汽车每月行驶x千米,每个月应付给个体车主的费用为y1元,应付给国有出租车公司的费用为y2元,x与y1,y2之间的关系图象如图,根据图象提供的信息,回答下列问题:
(1)个体车主和国有出租车公司哪家有月租费?月租费是多少?
(2)当汽车每月分别行驶500千米、1500千米和2000千米时,分别租用哪家的车合算?
考向三:一次函数与几何的结合问题
一次函数与几何图形结合时,要多考虑所结合图形的性质!
1.如图,佳佳设计了一种挖宝游戏,屏幕上正方形ABCD是宝藏区(含正方形边界),其中A(1,1),B(2,1),沿直线y=x+b行走,则游戏者能够挖到宝藏的b的取值范围为( )
A.﹣1≤b≤2 B.﹣2≤b≤1 C.﹣1≤b≤1 D.b≤1
2.八(1)班同学参加社会实践活动,在王伯伯的指导下,要围一个如图所示的长方形菜园ABCD,菜园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为12m,设边BC的长为xm,边AB的长为ym(x>y).则y与x之间的函数表达式为( )
A.y=﹣2x+12(0<x<12) B.y=﹣x+6(4<x<12)
C.y=2x﹣12(0<x<12) D.y=x﹣6(4<x<12)
3.有一个装有水的容器,如图所示,注水之前容器内有少量水,现向容器内注水,并同时开始计时,在注水过程中,水面高度匀速增加,则容器注满水之前,将容器内的水面高度y(cm)与时间x(秒)记录于如表,则★的值是( )
x/秒
5
10
25
30
y/cm
11
12
15
★
A.16 B.17 C.18 D.19
4.如图,正方形OA1B1C1,C1A2B2C2,C2A3B3C3,…的顶点A1,A2,A3,…在直线y=kx+b上,顶点C1,C2,C3,…在x轴上,已知B1(1,1),B2(3,2),那么点A4的坐标为 ,点An的坐标为 .
5.如图,一次函数y=﹣x+m的图象和y轴交于点B,与正比例函数y=x图象交于点P(2,n).
(1)求m和n的值;
(2)求△POA的面积.
6.如图,已知直线l1经过点(5,6),交x轴于点A(﹣3,0),直线l2:y=3x交直线l1于点B.
(1)求直线l1的函数表达式和点B的坐标;
(2)求△AOB的面积;
(3)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.
7.如图,A,B是分别在x轴上的原点左右侧的点,点P(2,m)在第一象限内,直线PA交y轴于点C(0,2),直线PB交y轴于点D,S△AOC=10.
(1)求点A的坐标及m的值;
(2)若S△BOP=S△DOP,求直线BD的解析式;
(3)在(2)的条件下,直线AP上是否存在一点Q,使△QAO的面积等于△BOD面积?若存在,求出点Q的坐标;若不存在,请说明理由.
1.(2022•德州)如图是y关于x的一个函数图象,根据图象,下列说法正确的是( )
A.该函数的最大值为7
B.当x≥2时,y随x的增大而增大
C.当x=1时,对应的函数值y=3
D.当x=2和x=5时,对应的函数值相等
2.(2022•攀枝花)中国人逢山开路,遇水架桥,靠自己勤劳的双手创造了世界奇迹.雅西高速是连接雅安和西昌的高速公路,被国内外专家学者公认为全世界自然环境最恶劣、工程难度最大、科技含量最高的山区高速公路之一,全长240km.一辆货车和一辆轿车先后从西昌出发驶向雅安,如图,线段OM表示货车离西昌距离y1(km)与时间x(h)之间的函数关系:折线OABN表示轿车离西昌距离y2(km)与时间x(h)之间的函数关系,则以下结论错误的是( )
A.货车出发1.8小时后与轿车相遇
B.货车从西昌到雅安的速度为60km/h
C.轿车从西昌到雅安的速度为110km/h
D.轿车到雅安20分钟后,货车离雅安还有20km
3.(2022•恩施州)如图1是我国青海湖最深处的某一截面图,青海湖水面下任意一点A的压强P(单位:cmHg)与其离水面的深度h(单位:m)的函数解析式为P=kh+P0,其图象如图2所示,其中P0为青海湖水面大气压强,k为常数且k≠0.根据图中信息分析(结果保留一位小数),下列结论正确的是( )
A.青海湖水深16.4m处的压强为189.36cmHg
B.青海湖水面大气压强为76.0cmHg
C.函数解析式P=kh+P0中自变量h的取值范围是h≥0
D.P与h的函数解析式为P=9.8×105h+76
4.(2022•玉林)龟兔赛跑之后,输了比赛的兔子决定和乌龟再赛一场.图中的函数图象表示了龟兔再次赛跑的过程(x表示兔子和乌龟从起点出发所走的时间,y1,y2分别表示兔子与乌龟所走的路程).下列说法错误的是( )
A.兔子和乌龟比赛路程是500米
B.中途,兔子比乌龟多休息了35分钟
C.兔子比乌龟多走了50米
D.比赛结果,兔子比乌龟早5分钟到达终点
5.(2022•阜新)快递员经常驾车往返于公司和客户之间.在快递员完成某次投递业务时,他与客户的距离s(km)与行驶时间t(h)之间的函数关系如图所示(因其他业务,曾在途中有一次折返,且快递员始终匀速行驶),那么快递员的行驶速度是 km/h.
6.一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y(升)与时间x(分钟)之间的函数关系如图所示,则图中a的值为 .
7.(2022•内蒙古)某商店决定购进A、B两种北京冬奥会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.
(1)求购进A、B两种纪念品的单价;
(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且购进B种纪念品数量不少于20件,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?求出最大利润.
8.(2022•襄阳)为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.
(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;
(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;
(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.
9.(2022•广安)某企业下属A、B两厂向甲乙两地运送水泥共520吨,A厂比B厂少运送20吨,从A厂运往甲乙两地的运费分别为40元/吨和35元/吨,从B厂运往甲乙两地的运费分别为28元/吨和25元/吨.
(1)求A、B两厂各运送多少吨水泥;
(2)现甲地需要水泥240吨,乙地需要水泥280吨.受条件限制,B厂运往甲地的水泥最多150吨.设从A厂运往甲地a吨水泥,A、B两厂运往甲乙两地的总运费为w元.求w与a之间的函数关系式,请你为该企业设计一种总运费最低的运输方案,并说明理由.
10.(2022•济宁)某运输公司安排甲、乙两种货车24辆恰好一次性将328吨的物资运往A,B两地,两种货车载重量及到A,B两地的运输成本如表:
货车类型
载重量(吨/辆)
运往A地的成本(元/辆)
运往B地的成本(元/辆)
甲种
16
1200
900
乙种
12
1000
750
(1)求甲、乙两种货车各用了多少辆;
(2)如果前往A地的甲、乙两种货车共12辆,所运物资不少于160吨,其余货车将剩余物资运往B地.设甲、乙两种货车到A,B两地的总运输成本为w元,前往A地的甲种货车为t辆.
①写出w与t之间的函数解析式;
②当t为何值时,w最小?最小值是多少?
11.(2022•湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.
(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?
(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式;
(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.
12.(2022•绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度(单位:米).
x
0
0.5
1
1.5
2
y
1
1.5
2
2.5
3
为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y=kx+b(k≠0),y=ax2+bx+c(a≠0),y=(k≠0).
(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.
(2)当水位高度达到5米时,求进水用时x.
13.(2022•梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.
(1)若新鲜龙眼售价为12元/kg.在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?
(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.
市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.
设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w元,请写出w与a的函数关系式.
1.(2022•毕节市)现代物流的高速发展,为乡村振兴提供了良好条件.某物流公司的汽车行驶30km后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1h到达目的地.汽车行驶的时间x(单位:h)与行驶的路程y(单位:km)之间的关系如图所示.请结合图象,判断以下说法正确的是( )
A.汽车在高速路上行驶了2.5h
B.汽车在高速路上行驶的路程是180km
C.汽车在高速路上行驶的平均速度是72km/h
D.汽车在乡村道路上行驶的平均速度是40km/h
2.(2022•桂林)桂林作为国际旅游名城,每年吸引着大量游客前来观光.现有一批游客分别乘坐甲乙两辆旅游大巴同时从旅行社前往某个旅游景点.行驶过程中甲大巴因故停留一段时间后继续驶向景点,乙大巴全程匀速驶向景点.两辆大巴的行程s(km)随时间t(h)变化的图象(全程)如图所示.依据图中信息,下列说法错误的是( )
A.甲大巴比乙大巴先到达景点
B.甲大巴中途停留了0.5h
C.甲大巴停留后用1.5h追上乙大巴
D.甲大巴停留前的平均速度是60km/h
3.(2022•绥化)小王同学从家出发,步行到离家a米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y(单位:米)与出发时间x(单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为( )
A.2.7分钟 B.2.8分钟 C.3分钟 D.3.2分钟
4.(2022•资阳)女子10千米越野滑雪比赛中,甲、乙两位选手同时出发后离起点的距离y(千米)与时间t(分钟)之间的函数关系如图所示,则甲比乙提前 分钟到达终点.
5.(2022•呼和浩特)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了 千克糯米;设某人的付款金额为x元,购买量为y千克,则购买量y关于付款金额x(x>10)的函数解析式为 .
6.(2022•遵义)如图,在等腰直角三角形ABC中,∠BAC=90°,点M,N分别为BC,AC上的动点,且AN=CM,AB=.当AM+BN的值最小时,CM的长为 .
7.(2022•南通)某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.
(1)写出图中点B表示的实际意义;
(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;
(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为akg时,它们的利润和为1500元,求a的值.
8.(2022•盐城)小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发.两人离甲地的距离y(m)与出发时间x(min)之间的函数关系如图所示.
(1)小丽步行的速度为 m/min;
(2)当两人相遇时,求他们到甲地的距离.
9.(2022•牡丹江)在一条平坦笔直的道路上依次有A,B,C三地,甲从B地骑电瓶车到C地,同时乙从B地骑摩托车到A地,到达A地后因故停留1分钟,然后立即掉头(掉头时间忽略不计)按原路原速前往C地,结果乙比甲早2分钟到达C地,两人均匀速运动,如图是两人距B地路程y(米)与时间x(分钟)之间的函数图象.
请解答下列问题:
(1)填空:甲的速度为 米/分钟,乙的速度为 米/分钟;
(2)求图象中线段FG所在直线表示的y(米)与时间x(分钟)之间的函数解析式,并写出自变量x的取值范围;
(3)出发多少分钟后,甲乙两人之间的路程相距600米?请直接写出答案.
10.(2022•长春)已知A、B两地之间有一条长440千米的高速公路.甲、乙两车分别从A、B两地同时出发,沿此公路相向而行,甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B地;乙车匀速行驶至A地,两车到达各自的目的地后停止,两车距A地的路程y(千米)与各自的行驶时间x(时)之间的函数关系如图所示.
(1)m= ,n= ;
(2)求两车相遇后,甲车距A地的路程y与x之间的函数关系式;
(3)当乙车到达A地时,求甲车距A地的路程.
11.(2022•通辽)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:
甲:所有商品按原价8.5折出售;
乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.
设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.
(1)分别求y甲,y乙关于x的函数关系式;
(2)两图象交于点A,求点A坐标;
(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.
12.(2022•遵义)遵义市开展信息技术与教学深度融合的“精准化教学”,某实验学校计划购买A,B两种型号教学设备,已知A型设备价格比B型设备价格每台高20%,用30000元购买A型设备的数量比用15000元购买B型设备的数量多4台.
(1)求A,B型设备单价分别是多少元;
(2)该校计划购买两种设备共50台,要求A型设备数量不少于B型设备数量的.设购买a台A型设备,购买总费用为w元,求w与a的函数关系式,并求出最少购买费用.
13.(2022•包头)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x天(x取整数)时,日销售量y(单位:千克)与x之间的函数关系式为y=,草莓价格m(单位:元/千克)与x之间的函数关系如图所示.
(1)求第14天小颖家草莓的日销售量;
(2)求当4≤x≤12时,草莓价格m与x之间的函数关系式;
(3)试比较第8天与第10天的销售金额哪天多?
14.(2022•黑龙江)为抗击疫情,支援B市,A市某蔬菜公司紧急调运两车蔬菜运往B市.甲、乙两辆货车从A市出发前往B市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B市.乙车维修完毕后立即返回A市.两车离A市的距离y(km)与乙车所用时间x(h)之间的函数图象如图所示.
(1)甲车速度是 km/h,乙车出发时速度是 km/h;
(2)求乙车返回过程中,乙车离A市的距离y(km)与乙车所用时间x(h)的函数解析式(不要求写出自变量的取值范围);
(3)乙车出发多少小时,两车之间的距离是120km?请直接写出答案.
15.(2022•吉林)李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系,根据记录的数据,画函数图象如下:
(1)加热前水温是 ℃.
(2)求乙壶中水温y关于加热时间x的函数解析式.
(3)当甲壶中水温刚达到80℃时,乙壶中水温是 ℃.
16.(2022•齐齐哈尔)在一条笔直的公路上有A、B两地,甲、乙二人同时出发,甲从A地步行匀速前往B地,到达B地后,立刻以原速度沿原路返回A地.乙从B地步行匀速前往A地(甲、乙二人到达A地后均停止运动),甲、乙二人之间的距离y(米)与出发时间x(分钟)之间的函数关系如图所示,请结合图象解答下列问题:
(1)A、B两地之间的距离是 米,乙的步行速度是 米/分;
(2)图中a= ,b= ,c= ;
(3)求线段MN的函数解析式;
(4)在乙运动的过程中,何时两人相距80米?(直接写出答案即可)
17.(2022•天津)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.
已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km.小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市停留20min后,匀速骑行了8min返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离ykm与离开学生公寓的时间xmin之间的对应关系.
请根据相关信息,解答下列问题:
(Ⅰ)填表:
离开学生公寓的时间/min
5
8
50
87
112
离学生公寓的距离/km
0.5
1.6
(Ⅱ)填空:
①阅览室到超市的距离为 km;
②小琪从超市返回学生公寓的速度为 km/min;
③当小琪离学生公寓的距离为1km时,他离开学生公寓的时间为 min.
(Ⅲ)当0≤x≤92时,请直接写出y关于x的函数解析式.
18.(2022•黑龙江)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:
(1)由于汽车发生故障,甲组在途中停留了 小时;
(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?
(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?
1.(2022•科左后旗模拟)为落实“双减”政策,某校利用课后服务时间举行趣味运动会.在直线跑道上,甲同学从A处匀速跑向B处,乙同学从B处匀速跑往A处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为x(秒),甲、乙两人之间的距离为y(米),y与x之间的函数关系如图所示,则图中t的值是( )
A. B. C.14 D.16
2.(2022•大渡口区校级模拟)周末,甲、乙两同学计划从同一起点出发,沿同一条路出发去距离80km的张关水溶洞风景旅游区游玩,甲、乙两人离开出发点的距离s(单位:km)与时间t(单位:h)之间的关系如图所示.下列说法错误的是( )
A.乙比甲提前出发1h
B.甲行驶的速度为40km/h
C.3h时,甲、乙两人相距80km
D.0.75h或1.125h时,乙比甲多行驶10km
3.(2022•汉阳区校级模拟)暑期将至,某游泳俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠;按照方案一所需费用为y1(元),且y=k1x+b;按照方案二所需费用为y2(元),且y2=k2x,其函数图象如图所示.若小明打算办一张暑期专享卡使得游泳时费用更合算,则他去游泳的次数x至少是( )
A.5 B.6 C.7 D.8
4.(2022•东港区校级三模)快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶.图中折线表示快、慢两车之间的距离y(km)与它们的行驶时间x(h)之间的函数关系.小欣同学结合图象得出如下结论:
①快车途中停留了0.5h;
②快车速度比慢车速度多20km/h;
③图中a=340;
④快车先到达目的地.
其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
5.(2022•柯城区校级三模)一条公路旁依次有A、B、C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论中错误的是( )
A.甲每小时比乙多骑行8km
B.出发1.25h后两人相遇
C.A,B两村相距10km
D.相遇后,乙又骑了15min或55min时两人相距2km
6.(2022•龙岗区校级模拟)甲、乙两辆遥控车沿直线AC做同方向的匀速运动.甲、乙同时分别从A,B出发,沿轨道到达C处.已知甲的速度是乙的速度的1.5倍,设t分钟后甲、乙两车与B处的距离分别为S1,S2,函数关系如图所示.若设t分钟后甲、乙两车与A处的距离分别为y1,y2.那么图中表示y1,y2关于t的函数关系的是( )
A. B. C. D.
7.(2022•文成县一模)如图,图中小正方形的组合图形是棱长为1的正方体一种表面展开图,过小正方形的顶点A,B,C,D的线段AB,CD与经过小正方形的顶点E,F的直线交于点M,N,则线段MN的长为( )
A.2 B.1+ C. D.
8.(2022•青浦区模拟)图中反映某网约车平台收费y(元)与所行驶的路程x(千米)的函数关系,根据图中的信息,当小明通过该网约车从家到机场共收费64元,若车速始终保持60km/h,不考虑其它因素(红绿灯、堵车等),他从家到机场需要 小时.
9.(2022•沿河县一模)如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在
BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于 .
10. (2022•松江区二模)某文具店购进一批纪念册,每本进价为20元,在销售过程中发现,该纪念册每周的销量y(本)与每本的售价x(元)之间满足一次函数关系:y=﹣2x+80(20<x<40).已知某一周该纪念册的售价为每本30元,那么这一周的盈利是
元.
11.(2022•石景山区二模)某甜品店会员购买本店甜品可享受八折优惠.“五一”期间该店又推出购物满200元减20元的“满减”活动.
说明:①“满减”是指购买的甜品标价总额达到或超过200元时减20元.“满减”活动只享受一次;
②会员可按先享“满减”优惠再享八折优惠的方式付款,也可按先享八折优惠再享“满减”优惠的方式付款.
小红是该店会员.若购买标价总额为220元的甜品,则最少需支付 元;
若购买标价总额为x元的甜品,按先享八折优惠再享“满减”优惠的方式付款最划算,则x的取值范围是 .
12.(2022•苏州一模)如图,正方形ABCD的边长为2,A为坐标原点,AB和AD分别在x轴、y轴上,点E是BC边的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为 .
13.(2023•黔江区一模)冬天是吃羊肉的好时节.白萝卜炖羊肉,不仅鲜美可口,对慢性支气管炎、脾虚积食等病症有补益效果.所以一到冬天,羊肉就是各大超市的畅销品.某超市在冬至这天,购进了大量羊腿和羊排.顾客甲买了4斤羊腿,3斤羊排,一共花了272元;顾客乙买了2斤羊腿,1斤羊排,一共花了116元.
(1)羊腿和羊排的售价分别是每斤多少元?
(2)第二天进货时,超市老板根据前一天的销售情况,决定购进羊腿和羊排共180斤,且羊腿的重量不少于120斤,若在售价不变的情况下,每斤羊腿可盈利6元,每斤羊排可盈利8元,问超市老板应该如何进货才能使得这批羊肉卖完时获利最大?最大利润是多少?
14.(2022•吉林二模)如图1,小明家、食堂、图书馆在同一条直线上.小明从食堂吃完早餐,接着步行去图书馆读报,然后以相同的速度原路返回家.如图2中反映了小明离家的距离y(m)与他所用时间x(min)之间的函数关系.
(1)小明家与图书馆的距离为 m,小明步行的速度为 m/min;
(2)求小明从图书馆返回家的过程中,y与x的函数解析式;
(3)当小明离家的距离为400m时,求x的值.
15.(2022•孝义市三模)近年来,吕梁市坚持经济转型发展的强劲态势,在新能源方面,充分挖掘吕梁山脉的风力资源和日照资源优势,加快推进风力发电、光伏发电发展.2020年昌梁市风力发电与光伏发电合计发电量为28亿度,2021年风力发电与光伏发电合计发电量34亿度,已知2021年风力发电量是2020年的1.1倍,2021年光伏发电量是2020年的1.5倍.
(1)求吕梁市2020年风力发电与光伏发电量分别是多少亿度?
(2)风力发电机组俗称“大风车”,某基地现有A,B型大风车15台,其中A型大风车a台,且B型大风车的数量不低于A型大风车的2倍,每台A型大风车每年发电量为200万度,每台B型大风车每年发电量为350万度,若这15台大风车每年发电量为w万度,请你求出w关于a的函数关系式,并求出w的最小值.
16.(2022•丛台区校级模拟)如图,点P(a,a+3)是直角坐标系xOy中的一个动点,直线l1:y=2x+6与x轴,y轴分别交于点A,B,直线l2经过点B和点(6,3)并与x轴交于点C.
(1)求直线l2的表达式及点C的坐标;
(2)点P会落在直线l1:y=2x+6上吗?说明原因;
(3)当点P在△ABC的内部时.
①求a的范围;
②是否存在点P,使得∠OPA=90°?若存在,直接写出点P的坐标;若不存在,请说明理由.
17.(2022•铜仁市三模)(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:CD=BE.
(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点N的坐标为(4,2),求点M的坐标.
(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣4x+4与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.
考点09 一次函数的应用-备战2023届中考数学一轮复习考点梳理(解析版): 这是一份考点09 一次函数的应用-备战2023届中考数学一轮复习考点梳理(解析版),共70页。试卷主要包含了9,,4m处的压强为189,8×105h+76,5<m<8时,等内容,欢迎下载使用。
考点12 二次函数的应用-备战2023年中考数学一轮复习考点帮(全国通用: 这是一份考点12 二次函数的应用-备战2023年中考数学一轮复习考点帮(全国通用,文件包含考点12二次函数的应用解析版docx、考点12二次函数的应用原卷版docx等2份试卷配套教学资源,其中试卷共62页, 欢迎下载使用。
考点10 反比例函数及其应用-备战2023年中考数学一轮复习考点帮(全国通用: 这是一份考点10 反比例函数及其应用-备战2023年中考数学一轮复习考点帮(全国通用,文件包含考点10反比例函数及其应用解析版docx、考点10反比例函数及其应用原卷版docx等2份试卷配套教学资源,其中试卷共110页, 欢迎下载使用。