中考数学二轮复习专题《面积问题》练习(含答案)
展开中考数学二轮复习专题
《面积问题》练习
一 、选择题
1.如图,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24m,MG=8m,MC=6m,则阴影部分地的面积是( )m2.
A.168 B.128 C.98 D.156
2.下图是4×4的正方形网格,每个小正方形的边长为1,每个小正方形的顶点叫格点,点A、B(均在格点上)的位置如图,若以A、B为顶点画面积为2的格点平行四边形,则符合条件的平行四边形的个数有( )
A.6 B.7 C.9 D.11
3.如图,正方形ABCD的对角线交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相等.无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的( )
A. B. C. D.
4.如图,平行四边形ABCD中,P是形内任意一点,△ABP,△BCP,△CDP,△ADP的面积分别为S1,S2,S3,S4,则一定成立的是( )
A.S1+S2=S3+S4 B.S1+S2>S3+S4 C.S1+S3=S2+S4 D.S1+S2<S3+S4
5.如图,D为△ABC内部一点,E、F两点分别在AB、BC上,且四边形DEBF为矩形,直线CD交AB于G点.若CF=6,BF=9,AG=8,则△ADC的面积为( )
A.16 B.24 C.36 D.54
6.如图,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以点A为圆心,AC为半径的弧交AB于点E,以B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为( )
A.15π B.18 C.15π﹣18 D.12﹣5π
7.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1和S2,比较S1与S2的大小( )
A.S1>S2 B.S1<S2 C.S1=S2 D.不能确定
8.如图,面积为24的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=,则小正方形的周长为( )
A. B. C. D.
二 、填空题
9.如图A,B两张纸片部分重叠,所占面积为160cm2,若A的面积为120cm2,B的面积为74cm2,则重叠部分(图中阴影部分)的面积是____________cm2.
10.如图,正方形ABCD的四个顶点A、B、C、D正好分别在四条平行线l1、l3、l4、 l2上,若从上到下每两条平行线间的距离都是2cm,则正方形ABCD的面积为 cm2.
11.如图,正方形ABCD的边长为1,分别以AB,BC,CD,DA为斜边作等腰直角三角形顺次得到第1个正方形A1B1C1D1,分别以A1B1,B1C1,C1D1,D1A1,为斜边作等腰直角三角形顺次得到第2个正方形A2B2C2D2,…,以此类推,则第2026个正方形A2026B2026C2026D2026的面积是 .
12.如图,▱ABCD中,AC⊥CD,以C为圆心,CA为半径作圆弧交BC于E,交CD的延长线于点F,以AC上一点O为圆心OA为半径的圆与BC相切于点M,交AD于点N.若AC=9cm,OA=3cm,则图中阴影部分的面积为 cm2.
13.如图,在正方形ABCD内有一折线段,其中AE丄EF,EF丄FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为 .
14.如图,已知直线y=x﹣3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最小值是 .
三 、解答题
15.如图,∠AOB=90°,OM平分∠AOB,直角三角板的直角顶点P在射线OM上移动,两直角边分别与OA、CB相交于点C、D.
(1)问PC与PD相等吗?试说明理由.
(2)若OP=2,求四边形PCOD的面积.
16.如图,在等腰直角△ABC中,∠A=90°,AB=AC,点D是斜边BC的中点,点E、F分别为AB、AC边上的点,且DE⊥DF.
(1)判断DF与DE的大小关系,并说明理由;
(2)若BE=12,CF=5,求△DEF的面积.
17.如图,函数y1=k1x+b的图象与函数y2=(x>0)的图象交于A、B两点,已知A(1,m),B(2,1)
(1)求m的值及y1、y2的函数表达式;
(2)不等式y2>y1的解集是 ;
(3)设点P是线段AB上的一个动点,过点P作PD⊥x轴于点D,E是y轴上一点,求△PED的面积S的取值范围.
18.如图,已知A1,A2,A3,…,An是x轴上的点,且OA1=A1A2=A2A3=…=An-1An=1,分别过点A1,A2,A3,…,An作x轴的垂线交反比例函数y=(x>0)的图象于点B1,B2,B3,…,Bn,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2……过点Bn+1作Bn+1Pn⊥AnBn于点Pn,记△B1P1B2的面积为S1,△B2P2B3的面积为S2……△BnPnBn+1的面积为Sn.求:
(1)S1=________;
(2)S10=________;
(3)S1+S2+S3+…+Sn的和.
参考答案
1.A.
2.B.
3.C.
4.C
5.B.
6.C.
7.B.
8.C
9.答案为:34
10.答案为:20;
11.答案为:22026
12.答案为:21π﹣.
13.答案为:80π﹣160.
14.答案为:5.5.
15.解:(1)结论:PC=PD.
理由:过P分别作PE⊥OB于E,PF⊥OA于F,
∴∠CFP=∠DEP=90°,
∵OM是∠AOB的平分线,
∴PE=PF,
∵∠1+∠FPD=90°,∠AOB=90°,
∴∠FPE=90°,
∴∠2+∠FPD=90°,
∴∠1=∠2,
在△CFP和△DEP中,
,
∴△CFP≌△DEP(ASA),
∴PC=PD.
(2)∵四边形PCOD的面积=正方形OEPF的面积,
∴四边形PCOD的面积=×2×2=2.
16.解:(1)DF=DE,理由如下:如图,连接AD,
∵AB=AC,D为BC的中点,
∴AD⊥BC,AD=CD=BD,
∵DE⊥DF,
∴∠CDF+∠ADF=∠EDA+∠ADF,即∠CDF=∠ADE,
在△DCF和△DAE中,
,
∴△DCF≌△DAE(ASA),
∴DF=DE;
(2)由(1)知:AE=CF=5,同理AF=BE=12.
∵∠EAF=90°,
∴EF2=AE2+AF2=52+122=169.
∴EF=13,
又∵由(1)知:△AED≌△CFD,
∴DE=DF,
∴△DEF为等腰直角三角形,DE2+DF2=EF2=169,
∴DE=DF=,
∴S△DEF=×()2=.
17.解:(1)将B(2,1)代入
y2=,得1=,∴k2=2,
∴y2=,
将A(1,m)代入y2=,得m=2,
分别将A(1,2),B(2,1)代入y1=k1x+b,得
,解得,
∴y1=﹣x+3;
(2)由函数图象知当0<x<1或x>2时,双曲线在直线上方,
所以不等式y2>y1的解集是0<x<1或x>2,
故答案为:0<x<1或x>2;
(3)设点P(x,y),E(a,0),
∵点P在线段AB上,
∴y=﹣x+3且1≤x≤2,
S=×(a+y)x﹣ax=xy=x(﹣x+3)=﹣x2+x=﹣(x﹣)2+,
∵1≤x≤2,
∴当x=时,S最大=,
当x=1或2时,S最小=1,
∴△PED的面积S的取值范围是1≤S≤.
18.解:(1)
(2)
(3)∵OA1=A1A2=A2A3=…=An-1An=1,
∴设点B1的坐标为(1,y1),点B2的坐标为(2,y2),点B3的坐标为(3,y3)……点Bn的坐标为(n,yn).
∵点B1,B2,B3,…,Bn在反比例函数y=(x>0)的图象上,
∴y1=1,y2=,y3=,…,yn=,
∴S1=×1×(y1-y2)=(1-),S2=×1×(y2-y3)=×(-),S3=×1×(y3-y4),…,
∴S1+S2+S3+…+Sn=.
2023年中考数学二轮复习《压轴题-面积问题》强化练习(含答案): 这是一份2023年中考数学二轮复习《压轴题-面积问题》强化练习(含答案),共21页。试卷主要包含了抛物线W1等内容,欢迎下载使用。
中考数学二轮复习专题《最值问题》练习(含答案): 这是一份中考数学二轮复习专题《最值问题》练习(含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学二轮复习专题《折叠问题》练习(含答案): 这是一份中考数学二轮复习专题《折叠问题》练习(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。