初中数学中考复习 专题33第6章四边形之与正方形有关的其他题型备战2021中考数学解题方法系统训练(全国通用)(原卷版)
展开33第6章四边形之与正方形有关的其他题型
一、单选题
1.如图,四边形是正方形,是的中点,连接与对角线相交于点,连接并延长,交于点,连接交于点.以下结论:①;②;③;④.其中正确结论的个数有( )
A.1 B.2 C.3 D.4
2.如图,正方期ABCD的边长为4,点E在对角线BD上,且为F,则EF的长为( )
A.2 B. C. D.
3.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③∠GDB=45°;④S△BEF= .在以上4个结论中,正确的有( )
A.1 B.2 C.3 D.4
4.如图,已知正方形ABCD的边长为4,P是对角线BD上一点,于点E,于点F,连接AP,给出下列结论:①;②四边形PECF的周长为8;③一定是等腰三角形;④;⑤的最小值为其中正确结论的序号为( )
A.①②④⑤ B.①③④⑤ C.②④⑤ D.②③⑤
5.如图,在正方形中,点是上一动点,点是的中点,绕点顺时针旋转90°得到,连接,给出结论:①;②;③;④若正方形的边长为2,则点在射线上运动时,有最小值.其中结论正确的是( )
A.①②③ B.①②④ C.①③④ D.②③④
6.如图,E、F分别是正方形ABCD的边BC、CD的中点,连接AF、DE交于点P,过B作BG∥DE交AD于G,BG与AF交于点M.对于下列结论:①AF⊥DE;②G是AD的中点;③∠GBP=∠BPE;④S△AGM:S△DEC=1:4.正确的个数是( )
A.1个 B.2个 C.3个 D.4个
7.如图,在正方形ABCD中,点E是边BC上的点,且CE=2BE,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于点F,下列结论:①∠AED+∠EAC+∠EDB=90°;②AP=FP;③AE=AO;④若四边形OPEQ的面积为2,则该正方形的面积为36;⑤CE·EF=EQ·DE.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
8.如图,四边形是边长为2的正方形,点为线段上的动点,为的中点,射线交的延长线于点,过点作的垂线交于点、交的延长线于点,则以下结论:①;②;③当点与点重合时;④当时,.成立的是
A.①③④ B.②③④ C.①③ D.②④
二、填空题
9.如图,已知矩形中,,,点,分别在边,上,沿着折叠矩形,使点,分别落在,处,且点在线段上(不与两端点重合),过点作于点,连接.当四边形为正方形时,______;若,则折叠后重叠部分的面积为______.
10.如图,将边长为1的正方形绕点逆时针旋转30°到正方形的位置,则图中阴影部分的面积为_______.
11.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠AEB=75°,③EG=FG且∠AGE=90°,④BE=FG⑤S△ABE=S△CEF.其中正确结论是_____(填序号).
12.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为_____________________ .
13.如图,已知正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD于点E,则BE的长为_________.
14.如图,正方形ABCD中,AB=3,点E为对角线AC上一点,EF⊥DE交AB于F,若四边形AFED的面积为4,则四边形AFED的周长为______.
15.如图,正方形ABCD的边长为1,AC、BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形;②△HED的面积是1﹣;③∠AFG=135°;④BC+FG=.其中正确的结论是_____.(填入正确的序号)
16.如图,以RtABC的斜边AB为一边,在AB的右侧作正方形ABED,正方形对角线交于点O,连接CO,如果AC=4,CO=,那么BC=______.
三、解答题
17.已知正方形ABCD,点E在AB上,点G在AD,点F在射线BC上,点H在CD上.
(1)如图1,DE⊥FG,求证:BF=AE+AG;
(2)如图2,DE⊥DF,P为EF中点,求证:BE=PC;
(3)如图3,EH交FG于O,∠GOH=45°,若CD=4,BF=DG=1,则线段EH的长为 .
18.已知正方形ABCD中AC与BD交于点O,点M在线段BD上,作直线AM交直线DC于点E,过D作DH⊥AE于H,设直线DH交AC于点N.
(1)如图1,当M在线段BO上时,求证:OM=ON;
(2)如图2,当M在线段OD上,连接NE和MN,当ENBD时,求证:四边形DENM是菱形;
(3)在(2)的条件下,若正方形边长为4,求EC的长.
19.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ.
(1)求证:EA是∠QED的平分线;
(2)已知BE=1,DF=3,求EF的长.
20.如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.
(1)求证AE=MN;
(2)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;
(3)如图3,若该正方形ABCD边长为10,将正方形沿着直线MN翻折,使得BC的对应边B′C′恰好经过点A,过点A作AG⊥MN,垂足分别为G,若AG=6,请直接写出AC′的长________.
21.如图,在平面直角坐标系中,边长为4的正方形的顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形绕点O按顺时针方向旋转,旋转角为,当点A第一次落在直线上时停止旋转,旋转过程中,边交直线于点M,边交x轴于点N.
(1)若时,求点A的坐标;
(2)设的周长为P,在旋转正方形的过程中,P值是否有变化?请证明你的结论;
22.在ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD的右侧作正方形ADEF,连接CF.
(1)观察猜想
如图1,当点D在线段BC上时,
①BC与CF的位置关系为: ;
②BC,CD,CF之间的数量关系为: .(将结论直接写在横线上)
(2)数学思考
如图2,当点D在线段CB的延长线上时,结论①②是否仍然成立?若成立,请给予证明:若不成立,请你写出正确结论再给予证明,
(3)拓展延伸
如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若AB=2,CD=1,请求出GE的长.
23.如图1,已知正方形顶点,分别在轴和轴上,边交轴的正半轴于点.
(1)若,且,求点的坐标.
(2)在(1)的条件下,若,点的坐标.
(3)如图2,连结交轴于点,点是点上方轴上一动点,以,为边作平行四边形,使点恰好落在边上.求证:.
24.已知,四边形ABCD是正方形,点E是正方形ABCD所在平面内一动点(不与点D重合),AB=AE,过点B作DE的垂线交DE所在直线于F,连接CF.
提出问题:当点E运动时,线段CF与线段DE之间的数量关系是否发生改变?
探究问题:
(1)首先考察点E的一个特殊位置:当点E与点B重合(如图①)时,点F与点B也重合.用等式表示线段CF与线段DE之间的数量关系: ;
(2)然后考察点E的一般位置,分两种情况:
情况1:当点E是正方形ABCD内部一点(如图②)时;
情况2:当点E是正方形ABCD外部一点(如图③)时.
在情况1或情况2下,线段CF与线段DE之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;
拓展问题:
(3)连接AF,用等式表示线段AF、CF、DF三者之间的数量关系: .
25.如图1,在正方形ABCD中,E,F分别是AD,CD上两点,BE交AF于点G,且DE=CF.
(1)写出BE与AF之间的关系,并证明你的结论;
(2)如图2,若AB=2,点E为AD的中点,连接GD,试证明GD是∠EGF的角平分线,并求出GD的长.
26.基础探究:如图①,在正方形ABCD中,点E为AD上一点,DF⊥CE交AB于F,垂足为点O.求证:CE=DF.
应用拓展:如图②,在正方形ABCD中,点E为AD上一点,FG⊥CE分别交AB、CD于F、G,垂足为点O.若正方形ABCD的边长为12,DE=5,则四边形EFCG的面积为_______.
初中数学中考复习 专题57:第12章压轴题之开放探究类-备战2021中考数学解题方法系统训练(全国通用)(原卷版): 这是一份初中数学中考复习 专题57:第12章压轴题之开放探究类-备战2021中考数学解题方法系统训练(全国通用)(原卷版),共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学中考复习 专题54:第12章压轴题之猜想证明类-备战2021中考数学解题方法系统训练(全国通用)(原卷版): 这是一份初中数学中考复习 专题54:第12章压轴题之猜想证明类-备战2021中考数学解题方法系统训练(全国通用)(原卷版),共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
初中数学中考复习 专题35第7章圆之与直径有关的辅助线备战2021中考数学解题方法系统训练(全国通用)(原卷版): 这是一份初中数学中考复习 专题35第7章圆之与直径有关的辅助线备战2021中考数学解题方法系统训练(全国通用)(原卷版),共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。