2022-2023学年上海市黄浦区中考数学专项突破仿真模拟卷(一模二模)含解析
展开2022-2023学年上海市黄浦区中考数学专项突破仿真模拟卷
(一模)
一、选一选(每小题3分,共30分)
1. 下列计算正确的是( )
A. B. C. D.
2. 下列所给图形是对称图形但没有是轴对称图形的是( )
A. B. C. D.
3. 若顺次连接四边形ABCD各边的中点所得四边形是菱形.则四边形ABCD一定是 ( )
A. 菱形 B. 对角线互相垂直的四边形
C. 矩形 D. 对角线相等的四边形
4. 从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为( )
A. B. C. D.
5. 如图,点,,,在上,是的一条弦,则( ).
A. B. C. D.
6. 将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和没有可能是( )
A. 360° B. 540° C. 720° D. 900°
7. 如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是( )
A. ﹣1 B. 1 C. D.
8. 如图是二次函数y=ax2+bx+c(a≠0)的图象,则反比例函数与函数y=bx﹣c在同一坐标系内的图象大致是( )
A. B.
C. D.
9. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )
A. 84 B. 336 C. 510 D. 1326
10. 如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5cm;②当0<t≤5时,;③直线NH的解析式为;④若△ABE与△QBP相似,则t=秒.其中正确的结论个数为【 】
A. 4 B. 3 C. 2 D. 1
二、填 空 题(每小题3分,共24分)
11. 若式子有意义,则x的取值范围是___.
12. 据报载,2016年我国发展固定宽带接入新用户260000000户,其中260000000用科学记数法表示为_____.
13. 已知是二元方程组的解,则2n﹣m的平方根是_____.
14. 对于任意实数m、n,定义一种运算m※n=mn﹣m﹣n+3,等式右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是_____.
15. 已知关于x的分式方程=1的解是非负数,则a的取值范围是__________.
16. 如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF周长是_____cm.
17. 如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C逆时针旋转α角后得到△A′B′C,当点A的对应点A'落在AB边上时,旋转角α的度数是_____度,阴影部分的面积为_____.
18. 如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下沿顺时针方向跳两个点;若停在偶数点上,则下沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2015次跳后它停的点所对应的数为______.
三、解 答 题:(共66分)
19. 计算:﹣sin60°+ .
20. 先化简,再求值:(﹣)÷,其中x是方程3x2﹣x﹣1=0根.
21. 如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2,并写出点A2、C2的坐标.
22. 已知关于x的方程x2+3x+=0有两个没有相等的实数根.
(1)求m的取值范围;
(2)若m为符合条件的整数,求此时方程的根.
23. 如图所示,已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.
(1)求证:DE是圆O的切线;
(2)若∠C=30°,CD=10cm,求圆O的半径.
24. 学校为统筹安排大课间体育,在各班随机选取了一部分学生,分成四类:“篮球”、 “羽毛球”、 “乒乓球”、“其他”进行,整理收集到数据,绘制成如下的两幅统计图.
(1)学校采用的方式是 ;学校在各班共随机选取了 名学生;
(2)补全统计图中的数据:羽毛球 人、乒乓球 人、其他 人、其他 ﹪;
(3)该校共有1100名学生,请计算喜欢“篮球”的学生人数.
25. 如图,在平面直角坐标系中,函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.
(1)求该反比例函数和函数解析式;
(2)求点B的坐标.
26. 在2014年“元旦”前夕,某商场试销一种成本为30元的文化衫,经试销发现,若每件按34元的价格,每天能卖出36件;若每件按39元的价格,每天能卖出21件.假定每天件数y(件)是价格x(元)的函数.
(1)直接写出y与x之间的函数关系式.
(2)在没有积压且没有考虑其他因素的情况下,每件的价格定为多少元时,才能使每天获得的利润P?
27. 以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.
(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,1秒后点P运动到点(2,0),此时PQ恰好是⊙O的切线,连接OQ.求∠QOP的大小;
(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处没有动,求点Q再5秒后直线PQ被⊙O截得的弦长.
28. 已知抛物线y=﹣+bx+c与y轴交于点C,与x轴的两个交点分别为A(﹣4,0),B(1,0).
(1)求抛物线的解析式;
(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P的坐标;
(3)已知点E在x轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若没有存在,请说明理由.
2022-2023学年上海市黄浦区中考数学专项突破仿真模拟卷
(一模)
一、选一选(每小题3分,共30分)
1. 下列计算正确的是( )
A. B. C. D.
【正确答案】C
【分析】直接利用合并同类项法则以及积的乘方运算法则和二次根式加减运算法则、完全平方公式分解计算得出答案.
【详解】A.2a+3b无法计算,故此选项错误;
B.,故此选项错误;
C.,正确;
D.,故此选项错误;
故选C.
2. 下列所给图形是对称图形但没有是轴对称图形的是( )
A. B. C. D.
【正确答案】D
【详解】A. 此图形没有是对称图形,没有是轴对称图形,故A选项错误,没有符合题意;
B. 此图形是对称图形,也是轴对称图形,故B选项错误,没有符合题意;
C. 此图形没有是对称图形,是轴对称图形,故C选项错误,没有符合题意.
D. 此图形是对称图形,没有是轴对称图形,故D选项正确,符合题意;
故选D.
3. 若顺次连接四边形ABCD各边的中点所得四边形是菱形.则四边形ABCD一定是 ( )
A. 菱形 B. 对角线互相垂直的四边形
C. 矩形 D. 对角线相等的四边形
【正确答案】D
【分析】根据三角形中位线定理得到EH∥FG,EF=FG,EF=BD,要是四边形为菱形,得出EF=EH,即可得到答案.
【详解】解:∵E,F,G,H分别是边AD,AB,CB,DC的中点,
∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,
∴EH∥FG,EF=FG,
∴四边形EFGH是平行四边形,
假设AC=BD,
∵EH=AC,EF=BD,
则EF=EH,
∴平行四边形EFGH是菱形,
即只有具备AC=BD即可推出四边形是菱形,
故选:D.
题目主要考查中位线的性质及菱形的判定和性质,理解题意,熟练掌握运用三角形中位线的性质是解题关键.
4. 从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为( )
A. B. C. D.
【正确答案】C
【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.
【详解】解:从四条线段中任意选取三条,所有的可能有:1,3,5;1,3,7;1,5,7;3,5,7共4种,
其中构成三角形的有3,5,7共1种,
∴能构成三角形的概率为:,
故选C.
此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.
5. 如图,点,,,在上,是的一条弦,则( ).
A. B. C. D.
【正确答案】D
【分析】连接CD,由圆周角定理可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形OCD中利用三角函数即可求出答案.
【详解】解:连接CD,
∵D(0,3),C(4,0),
∴OD=3,OC=4,
∵∠COD=90°,
∴,
∵∠OBD=∠OCD,
∴sin∠OBD=sin∠OCD=,
故选:D.
本题考查了圆周角定理,勾股定理、以及锐角三角函数的定义;熟练掌握圆周角定理是解决问题的关键.
6. 将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和没有可能是( )
A. 360° B. 540° C. 720° D. 900°
【正确答案】D
【分析】根据题意列出可能情况,再分别根据多边形的内角和定理进行解答即可.
【详解】解:①将矩形沿对角线剪开,得到两个三角形,两个多边形的内角和:180°+180°=360°;
②将矩形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为:180°+360°=540°;
③将矩形沿一组对边剪开,得到两个四边形,两个多边形的内角和为:180°+540°=720°,
④将矩形沿一组邻边剪开,得到一个三角形和一个五边形,其内角和为:180°+540°=720°,
故选D.
7. 如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是( )
A. ﹣1 B. 1 C. D.
【正确答案】D
【详解】作FH⊥x轴,EC⊥y轴,FH与EC交于D,如图,
A点坐标为(2,0),B点坐标为(0,2),OA=OB,
∴△AOB为等腰直角三角形,
∴AB=OA=2,
∴EF=AB=,
∴△DEF为等腰直角三角形,
∴FD=DE=EF=1,
设F点横坐标为t,代入y=﹣x+2,则纵坐标是﹣t+2,则F的坐标是:(t,﹣t+2),E点坐标为(t+1,﹣t+1),
∴t(﹣t+2)=(t+1)•(﹣t+1),解得t=,
∴E点坐标为,
∴k=×= .
故选D.
8. 如图是二次函数y=ax2+bx+c(a≠0)的图象,则反比例函数与函数y=bx﹣c在同一坐标系内的图象大致是( )
A. B.
C. D.
【正确答案】C
【分析】根据二次函数的图象确定的正负,再反比例函数、函数系数与图象的关系即可得出结论.
【详解】观察二次函数图象可知:
开口向上,;
对称轴y轴右侧,,异号,则b<0;
二次函数图象与y轴交点在y轴的正半轴,c>0.
∵反比例函数中,
∴反比例函数图象在第二、四象限内;
∵函数中,,
∴函数图象第二、三、四象限.
故选:C.
本题考查了二次函数的图象、反比例函数的图象以及函数的图象,解题的关键是根据二次函数的图象找出的正负.
9. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )
A. 84 B. 336 C. 510 D. 1326
【正确答案】C
【详解】由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510,
故选:C.
点睛:本题考查记数方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.
10. 如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5cm;②当0<t≤5时,;③直线NH的解析式为;④若△ABE与△QBP相似,则t=秒.其中正确的结论个数为【 】
A. 4 B. 3 C. 2 D. 1
【正确答案】B
【详解】根据图(2)可得,当点P到达点E时点Q到达点C,
∵点P、Q的运动的速度都是1cm/秒,
∴BC=BE=5cm.∴AD=BE=5,故结论①正确.
如图1,过点P作PF⊥BC于点F,
根据面积没有变时△BPQ的面积为10,可得AB=4,
∵AD∥BC,∴∠AEB=∠PBF.
∴.
∴PF=PBsin∠PBF=t.
∴当0<t≤5时,y=BQ•PF=t•t=.故结论②正确.
根据5~7秒面积没有变,可得ED=2,
当点P运动到点C时,面积变为0,此时点P走过的路程为BE+ED+DC=11,故点H的坐标为(11,0).
设直线NH的解析式为y=kx+b,
将点H(11,0),点N(7,10)代入可得:,解得:.
∴直线NH的解析式为:.故结论③错误.
如图2,当△ABE与△QBP相似时,点PDC上,
∵tan∠PBQ=tan∠ABE=,∴,即.
解得:t=.故结论④正确.
综上所述,①②④正确,共3个.故选B.
考点:动点问题的函数图象,双动点问题,矩形的性质,锐角三角函数定义,待定系数法的应用,曲线上点的坐标与方程的关系,相似三角形的性质,分类思想的应用.
二、填 空 题(每小题3分,共24分)
11. 若式子有意义,则x的取值范围是___.
【正确答案】且
【详解】∵式子在实数范围内有意义,
∴x+1≥0,且x≠0,
解得:x≥-1且x≠0,
故答案为x≥-1且x≠0.
12. 据报载,2016年我国发展固定宽带接入新用户260000000户,其中260000000用科学记数法表示为_____.
【正确答案】2.6×108
【详解】由科学记数法的定义知:260000000=2.6×108.
故2.6×108.
13. 已知是二元方程组的解,则2n﹣m的平方根是_____.
【正确答案】±2
【详解】∵是二元方程组的解,
∴,
解得
∵2n﹣m=2×3﹣2=4,
∴2n﹣m的平方根为±2.
故答案为±2.
14. 对于任意实数m、n,定义一种运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是_____.
【正确答案】
【详解】解:根据题意得:2※x=2x﹣2﹣x+3=x+1,
∵a<x+1<7,即a﹣1<x<6解集中有两个整数解,
∴a的范围为,
故答案为.
本题考查一元没有等式组的整数解,准确理解题意正确计算是本题的解题关键.
15. 已知关于x的分式方程=1的解是非负数,则a的取值范围是__________.
【正确答案】a≥1且a≠2
【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.
【详解】解:分式方程去分母得:a﹣2=x﹣1,
解得:x=a﹣1,
由方程的解为非负数,得到a﹣1≥0,且a﹣1≠1,
解得:a≥1且a≠2.
故a≥1且a≠2.
此题考查了分式方程的解,时刻注意分母没有为0这个条件.
16. 如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是_____cm.
【正确答案】8
【详解】试题分析:BE=AB-AE=2.设AH=x,则DH=AD﹣AH=8﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=8﹣x,∴EH2=AE2+AH2,即(8﹣x)2=42+x2,解得:x=3.∴AH=3,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.
∴C△EBF==C△HAE=8.
考点:1折叠问题;2勾股定理;3相似三角形.
17. 如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C逆时针旋转α角后得到△A′B′C,当点A的对应点A'落在AB边上时,旋转角α的度数是_____度,阴影部分的面积为_____.
【正确答案】 ①. 60 ②.
【分析】连接CA′,证明三角形AA′C是等边三角形即可得到旋转角α的度数,再利用旋转的性质求出扇形圆心角以及△CDB′的两直角边长,进而得出图形面积即可.
【详解】连接CA′,
∵AC=A′C,且∠A=60°,
∴△ACA′是等边三角形.
∴∠ACA′=60°,
∴∠A′CB=90°-60°=30°,
∵∠CA′D=∠A=60°,
∴∠CDA′=90°,
∵∠B′CB=∠A′CB′-∠A′CB=90°-30°=60°,
∴∠CB′D=30°,
∴CD=CB′=CB=×2=1,
∴B′D=,
∴S△CDB′=×CD×DB′=×1×=,
S扇形B′CB=,
则阴影部分的面积为:.
考点:1.旋转的性质;2.扇形面积的计算.
此题主要考查了扇形面积应用以及三角形面积求法和勾股定理应用等知识,本题的关键是弄清所求的阴影面积等于扇形减去三角形面积.
18. 如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下沿顺时针方向跳两个点;若停在偶数点上,则下沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2015次跳后它停的点所对应的数为______.
【正确答案】2
【详解】解:根据题意可得:第1次跳到数3那个点;
则第2次跳到数5那个点;
第3次跳到数2那个点;
第4次跳到数1那个点;…
所以4次跳后一个循环,依次在3,5,2,1这4个数上循环,
因为2015÷4=503…3,所以2015次跳后它停在2上.
故2
本题考查探寻规律.
三、解 答 题:(共66分)
19. 计算:﹣sin60°+ .
【正确答案】.
【详解】试题分析:根据角的三角函数、二次根式的化简进行计算即可.
试题解析:原式=﹣+4×=﹣+2=+2=.
20. 先化简,再求值:(﹣)÷,其中x是方程3x2﹣x﹣1=0的根.
【正确答案】 ,.
【详解】试题分析:先根据分式混合运算的法则把原式进行化简,再求出x的值,把x的值代入化简后的式子进行计算即可.
试题解析:原式=×=×=,
∵3x2﹣x﹣1=0,
∴x+1=3x2,
∴原式==.
21. 如图,△ABC三个顶点坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2,并写出点A2、C2的坐标.
【正确答案】(1)作图见解析,点A1的坐标为(2,﹣4);(2)作图见解析,点A2、C2的坐标分别为(﹣2,2),(﹣1,4).
【详解】试题分析:(1)根据关于x轴对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;
(2)利用网格特点和旋转的性质画出点A2、B2、C2的坐标,然后描点即可得到△A2B2C2,然后写出点A2、C2的坐标.
试题解析:(1)△A1B1C1为所作,点A1的坐标为(2,﹣4);
(2)△A2BC2为所作,点A2、C2的坐标分别为(﹣2,2),(﹣1,4).
22. 已知关于x的方程x2+3x+=0有两个没有相等的实数根.
(1)求m的取值范围;
(2)若m为符合条件的整数,求此时方程的根.
【正确答案】(1)m<3;(2)x1=,x2=.
【分析】(1)先根据方程有两个没有相等的实数根可知△>0,由△>0可得到关于m的没有等式,求出m的取值范围即可;
(2)由(1)中m的取值范围得出符合条件的m的整数值,代入原方程,利用求根公式即可求出x的值.
【详解】解:(1)∵关于x的方程x2+3x+=0有两个没有相等的实数根,
∴△=32﹣4×1×=9﹣3m>0,
∴m<3;
(2)∵m<3,
∴符合条件的整数是2,
∴原方程为x2+3x+=0,
解得:x1=,x2=.
23. 如图所示,已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.
(1)求证:DE是圆O的切线;
(2)若∠C=30°,CD=10cm,求圆O的半径.
【正确答案】
【详解】试题分析:(1)连接OD,利用三角形的中位线定理可得出OD∥AC,再利用平行线的性质就可证明DE是圆O的切线.
(2)利用30°角度,可求出AD的长,由两直线平行同位角相等,可得出∠ODB=∠C=30°,从而△ABD为直角三角形,圆O的半径可求.
试题解析:(1)连接OD,∵D是BC的中点,O为AB的中点,∴OD∥AC.
又∵DE⊥AC,∴OD⊥DE,∵OD为半径,∴DE是圆O的切线.
(2)连接AD;∵AB是圆O的直径,∴∠ADB=90°=∠ADC,
∴△ADC是直角三角形.∵∠C=30°,CD=10,∴AD=.
∵OD∥AC,OD=OB,∴∠B=30°,∴△OAD是等边三角形,∴OD=AD=,
∴圆O的半径为cm.
【考点】切线的判定;等边三角形的性质;圆周角定理.
24. 学校为统筹安排大课间体育,在各班随机选取了一部分学生,分成四类:“篮球”、 “羽毛球”、 “乒乓球”、“其他”进行,整理收集到的数据,绘制成如下的两幅统计图.
(1)学校采用的方式是 ;学校在各班共随机选取了 名学生;
(2)补全统计图中的数据:羽毛球 人、乒乓球 人、其他 人、其他 ﹪;
(3)该校共有1100名学生,请计算喜欢“篮球”的学生人数.
【正确答案】(1)抽样;100;(2)21,18,25,25 (3)396 人
【分析】(1)根据条件:在各班随机选取了一部分学生,可知学校采用的方式是抽样,利用喜欢篮球的人数和百分比可求出总人数;(2)用总人数乘以各项的百分比即可求出各项的人数,其他所占百分比为:1-36%-21%-18%;(3)根据36%×1100计算即可
【详解】解:(1)学校采用的方式是抽样;
由题意可得:喜欢篮球的人数为:36人,所占比例为:36%,
所以学校在各班随机选取了学生:36÷36%=100(名);
(2)喜欢羽毛球人数为:100×21%=21(人),
喜欢乒乓球人数为:100×18%=18(人),
其他所占百分比为:1-36%-21%-18%=25%,
喜欢其它人数为:100×25%=25(人),
如图所示:
(3)根据题意得:36%×1100=396,
即估计喜欢“篮球”的学生人数为396人.
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从没有同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体的思想.
25. 如图,在平面直角坐标系中,函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.
(1)求该反比例函数和函数的解析式;
(2)求点B的坐标.
【正确答案】(1)反比例函数的解析式为,函数的解析式为y=2x+4;(2)点B坐标为(﹣3,﹣2).
【分析】(1)先过点A作AD⊥x轴,根据tan∠ACO=2,求得点A的坐标,进而根据待定系数法计算两个函数解析式;(2)先联立两个函数解析式,再通过解方程求得交点B的坐标即可.
【详解】解:(1)过点A作AD⊥x轴,垂足为D.由A(n,6),C(﹣2,0)可得,OD=n,AD=6,CO=2
∵tan∠ACO=2,∴=2,即,∴n=1,∴A(1,6).将A(1,6)代入反比例函数,得m=1×6=6,∴反比例函数的解析式为.
将A(1,6),C(﹣2,0)代入函数y=kx+b,可得:,解得:,∴函数的解析式为y=2x+4;
(2)由可得,,解得=1,=﹣3.∵当x=﹣3时,y=﹣2,
∴点B坐标为(﹣3,﹣2).
本题考查反比例函数与函数的交点问题,利用数形思想解题是关键.
26. 在2014年“元旦”前夕,某商场试销一种成本为30元的文化衫,经试销发现,若每件按34元的价格,每天能卖出36件;若每件按39元的价格,每天能卖出21件.假定每天件数y(件)是价格x(元)的函数.
(1)直接写出y与x之间的函数关系式.
(2)在没有积压且没有考虑其他因素的情况下,每件的价格定为多少元时,才能使每天获得的利润P?
【正确答案】(1);(2)38.
【详解】试题分析:(1)设y与x满足的函数关系式为y=kx+b,由题意可列出k和b的二元方程组,解出k和b的值即可;
(2)根据题意:每天获得的利润为:,转换为,于是求出每天获得的利润P时的价格.
试题解析:(1);
(2)每天获得的利润
答:每件的价格定为38元时,每天获得的利润.
考点:.1.二次函数的应用;2.函数的应用.
27. 以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.
(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,1秒后点P运动到点(2,0),此时PQ恰好是⊙O的切线,连接OQ.求∠QOP的大小;
(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处没有动,求点Q再5秒后直线PQ被⊙O截得的弦长.
【正确答案】(1)∠QOP=60°;(2)QD=.
【详解】(1)解:如图一,连结AQ.
由题意可知:OQ=OA=1.
∵OP=2,
∴A为OP的中点.
∵PQ与相切于点Q,
∴为直角三角形
∴
即ΔOAQ为等边三角形.
∴∠QOP=60°.
(2)解:由(1)可知点Q运动1秒时的弧长所对的圆心角为30°,若Q按照(1)中的方向和速度继续运动,那么再过5秒,则Q点落在与y轴负半轴的交点的位置(如图二).设直线PQ与的交点为D,过O作OC⊥QD于点C,则C为QD的中点.
∵∠QOP=90°,OQ=1,OP=2,
∴QP=
∵,
∴OC=
∵OC⊥QD,OQ=1,OC=,
∴QC=.
∴QD=
28. 已知抛物线y=﹣+bx+c与y轴交于点C,与x轴的两个交点分别为A(﹣4,0),B(1,0).
(1)求抛物线的解析式;
(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P的坐标;
(3)已知点E在x轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若没有存在,请说明理由.
【正确答案】(1)抛物线的解析式为y=﹣;(2)存在,满足条件的P点坐标为(﹣4,0),P2(﹣5,﹣3);(3)满足条件的点E为(﹣7,0)或(﹣1,0)或(,0)或(,0).
【分析】(1)因为抛物线点A(﹣4,0),B(1,0),所以可以设抛物线为y=﹣(x+4)(x﹣1),展开即可解决问题;
(2)先证明∠ACB=90°,点A就是所求的点P,求出直线AC解析式,再求出过点B平行AC的直线的解析式,利用方程组即可解决问题;
(3)分AC为平行四边形的边,AC为平行四边形的对角线讨论即可解决问题.
【详解】解:(1)抛物线的解析式为y=﹣(x+4)(x﹣1),即;
(2)存在.当x=0,=2,则C(0,2),
∴OC=2,∵A(﹣4,0),B(1,0),
∴OA=4,OB=1,AB=5,当∠PCB=90°时,
∵AC2=42+22=20,BC2=22+12=5,AB2=52=25
∴AC2+BC2=AB2,
∴△ACB是直角三角形,∠ACB=90°,
∴当点P与点A重合时,△PBC是以BC为直角边的直角三角形,此时P点坐标为(﹣4,0);
当∠PBC=90°时,PB//AC,如图1,设直线AC的解析式为y=mx+n,把A(﹣4,0),C(0,2)代入得:,解得: ,
∴直线AC的解析式为y=x+2,
∵BP//AC,
∴直线BP的解析式为y=x+p,把B(1,0)代入得+p=0,解得p=﹣,∴直线BP的解析式为y=x﹣,
解方程组:得: 或,
此时P点坐标为(﹣5,﹣3);
综上所述,满足条件的P点坐标为(﹣4,0),P2(﹣5,﹣3);
(3)存在点E,设点E坐标为(m,0),F(n,),分三种情况讨论:
①当AC边,CF1//AE1,易知CF1=3,此时E1坐标(﹣7,0);
②当AC为边时,AC//EF,易知点F纵坐标为﹣2,
∴=﹣2,
解得n= ,得到F2(,﹣2),F3(,﹣2),
根据中点坐标公式得到: = 或 =,
解得m=或,此时E2(,0),E3(,0);
③当AC为对角线时,AE4=CF1=3,此时E4(﹣1,0).
综上所述满足条件的点E为(﹣7,0)或(﹣1,0)或(,0)或(,0).
本题考查二次函数综合题、函数、勾股定理、平行四边形的判定和性质、中点坐标公式等知识,解题的关键是构建函数利用方程组解决点P坐标,学会分类讨论,学会用方程的思想解决问题,属于中考压轴题.
2022-2023学年上海市黄浦区中考数学专项突破仿真模拟卷
(二模)
一.选一选(共10小题,满分36分)
1. 点A、B在数轴上位置如图所示,其对应的数分别是a和b,下列结论中正确的是( )
A. b+a>0 B. a﹣b<0 C. |a|>|b| D. <0
2. 如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )
A. 76° B. 78° C. 80° D. 82°
3. 计算的结果是( )
A. ﹣ B. C. ﹣ D.
4. 下列说确的是 ( )
A. “有交通信号的路口,遇到红灯,” 是必然
B. 已知某篮球运动员投篮投中的概率为,则他投次一定可投中次
C. 处于中间位置的数一定是中位数
D. 方差越大数据的波动越大,方差越小数据的波动越小
5. 正十二边形的每一个内角的度数为( )
A. 120° B. 135° C. 150° D. 108°
6. 函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的没有等式kx+b>0的解集为( )
A. x>0 B. x<0 C. x<2 D. x>2
7. 为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是( )
A. B. C. D.
8. 已知一个立体图形,其正视图和侧视图均为等腰三角形,俯视图为半径为1cm的圆(含圆心),若它的侧面展开图的面积为2πcm2,则此几何体的高为( )
A. B. 2cm C. D. 4cm
9. 一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,使点C落在点C′的位置,BC′交AD于点G(图1);再折叠,使点D与点A重合,得折痕EN,EN交AD于点M(图2),则EM的长为( )
A. 2 B. C. D.
10. 如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是( )
A. ﹣1 B. 1 C. D.
二.填 空 题(共5小题,满分20分,每小题4分)
11. 计算的结果为_____.
12. 如图,在菱形ABCD中,,则菱形ABCD的面积为_________.
13. 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是_____%(注:利润率=×).
14. 用等分圆周的方法,在半径为1的圆中画出如图所示图形,则图中阴影部分的面积为______.
15. 二次函数(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:
①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有______(请将结论正确的序号全部填上)
三.解 答 题(共9小题,满分90分)
16. 解关于x没有等式组:.
17. 已知:ax=by=cz=1,求的值.
18. 某中学将组织七年级学生春游,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.
(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.
聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?
(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的只租用60座客车,正好坐满且比甲同学的少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的吗”?如果是你,你该如何设计租车,并说明理由.
19. 如图,□ABCD中,平分交于点,平分交于点.
求证:(1);
(2)若,则判断四边形是什么四边形,请证明你的结论.
20. 现今“运动”被越来越多的人关注和喜爱,某兴趣小组随机了我市50名教师某日“运动”中的步数情况进行统计整理,绘制了如下的统计图表(没有完整):
步数
频数
频率
0≤x<4000
8
a
4000≤x<8000
15
0.3
8000≤x<12000
12
b
12000≤x<16000
c
0.2
16000≤x<20000
3
0.06
20000≤x<24000
d
0.04
请根据以上信息,解答下列问题:
(1)写出a,b,c,d的值并补全频数分布直方图;
(2)本市约有37800名教师,用样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.
21. 在东西方向的海岸线上有一长为的码头(如图),在码头西端的正西处有一观察站.某时刻测得一艘匀速直线航行的轮船位于的北偏西,且与相距的处;,又测得该轮船位于的北偏东,且与相距的处.
(1)求该轮船航行的速度.
(2)如果该轮船没有改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.
22. 某学校要制作一批工作宣传材料.甲公司提出:每份材料收费10元,另收1000元的版面设计费;乙公司提出:每份材料收费20元,没有收版面设计费.请你帮助该学校选择制作.
23. 如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.
(1)求证:△ADC∽△CDB;
(2)若AC=2,AB=CD,求⊙O半径.
24. 如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经
过点A、C、B的抛物线的一部分C1与点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封
闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:(<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积?若存在,求出△PBC面积的值;若没有存在,请说明理由;
(3)当△BDM为直角三角形时,求的值.
2022-2023学年上海市黄浦区中考数学专项突破仿真模拟卷
(二模)
一.选一选(共10小题,满分36分)
1. 点A、B在数轴上的位置如图所示,其对应的数分别是a和b,下列结论中正确的是( )
A. b+a>0 B. a﹣b<0 C. |a|>|b| D. <0
【正确答案】D
【分析】根据图示,可得:0<a<3,b<−3,据此逐项判断即可.
【详解】解:A、∵0<a<3,b<−3,
∴b+a<0,故选项错误;
B、∵0<a<3,b<−3,
∴a−b>0,故选项错误;
C、∵0<a<3,b<−3,
∴|a|<|b|,故选项错误;
D、∵0<a<3,b<−3,
∴<0,故选项正确.
故选D.
此题主要考查了有理数大小比较的方法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是要明确:当数轴方向朝右时,右边的数总比左边的数大.
2. 如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )
A. 76° B. 78° C. 80° D. 82°
【正确答案】B
【详解】如图,分别过K、H作AB的平行线MN和RS,
∵AB∥CD,
∴AB∥CD∥RS∥MN,
∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,
∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),
∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,
∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,
又∠BKC﹣∠BHC=27°,
∴∠BHC=∠BKC﹣27°,
∴∠BKC=180°﹣2(∠BKC﹣27°),
∴∠BKC=78°,
故选B.
3. 计算的结果是( )
A. ﹣ B. C. ﹣ D.
【正确答案】A
【详解】分析: 直接利用积的乘方运算法则将原式变形得出答案.
详解:
=
=
故选A.
点睛: 此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.
4. 下列说确的是 ( )
A. “有交通信号的路口,遇到红灯,” 是必然
B. 已知某篮球运动员投篮投中的概率为,则他投次一定可投中次
C. 处于中间位置的数一定是中位数
D. 方差越大数据的波动越大,方差越小数据的波动越小
【正确答案】D
【详解】试题解析:A、“有交通信号的路口,遇到红灯,”是随机,故原题说法错误;
B、已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次,说法错误;
C、处于中间位置的数一定是中位数,说法错误;
D、方差越大数据的波动越大,方差越小数据的波动越小,说确;
故选D.
考点:概率的意义;W4:中位数;W7:方差;X1:随机.
5. 正十二边形的每一个内角的度数为( )
A. 120° B. 135° C. 150° D. 108°
【正确答案】C
【分析】首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角得出每个内角的度数.
【详解】正十二边形的每个外角的度数是:
=30°,
则每一个内角的度数是:180°−30°=150°.
故选项为:C.
本题考查了正多边形的性质,掌握多边形的外角和等于360度,正确理解内角与外角的关系是关键.
6. 函数y=kx+b(k、b为常数,k≠0)的图象如图,则关于x的没有等式kx+b>0的解集为( )
A. x>0 B. x<0 C. x<2 D. x>2
【正确答案】C
【详解】根据图象可知y=kx+b与x轴交于(2,0),图像在交点的左侧部分满足没有等式kx+b>0 ,
故解集为x<2,
故选C
7. 为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是( )
A. B. C. D.
【正确答案】A
【分析】根据题意有,原计划每小时植树x棵,实际每小时植树棵,利用“实际比计划提前20分钟完成任务”列出方程即可.
【详解】解:根据题意有,
故选:A.
本题主要考查列分式方程,读懂题意找到等量关系是解题的关键.
8. 已知一个立体图形,其正视图和侧视图均为等腰三角形,俯视图为半径为1cm的圆(含圆心),若它的侧面展开图的面积为2πcm2,则此几何体的高为( )
A. B. 2cm C. D. 4cm
【正确答案】A
【详解】分析: 先由三视图判断几何体为圆锥,圆锥的侧面积=π×底面半径×母线长,先求出母线长,再根据勾股定理求出此几何体的高.
详解: ∵圆锥的底面半径为1cm,侧面展开图的面积为2πcm2,
∴圆锥的母线长=2π÷π=2,
∴此几何体的高为==.
故选A.
点睛: 本题考查的知识点是根据三视图求物体的高,其中根据已知中的三视图,判断出几何体的形状是解答本题的关键.
9. 一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,使点C落在点C′的位置,BC′交AD于点G(图1);再折叠,使点D与点A重合,得折痕EN,EN交AD于点M(图2),则EM的长为( )
A. 2 B. C. D.
【正确答案】D
【详解】∵点D与点A重合,得折痕EN,
∴DM=4cm,
∵AD=8cm,AB=6cm,
在Rt△ABD中,BD==10cm,
∵EN⊥AD,AB⊥AD,
∴EN∥AB,
∴MN是△ABD的中位线,
∴DN=BD=5cm,
在Rt△MND中,
∴MN==3(cm),
由折叠的性质可知∠NDE=∠NDC,
∵EN∥CD,
∴∠END=∠NDC,
∴∠END=∠NDE,
∴EN=ED,设EM=x,则ED=EN=x+3,
由勾股定理得ED²=EM²+DM²,即(x+3) ²=x²+4²,
解得x=,
即EM=cm.
故选D.
10. 如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是( )
A. ﹣1 B. 1 C. D.
【正确答案】D
【详解】作FH⊥x轴,EC⊥y轴,FH与EC交于D,如图,
A点坐标为(2,0),B点坐标为(0,2),OA=OB,
∴△AOB为等腰直角三角形,
∴AB=OA=2,
∴EF=AB=,
∴△DEF为等腰直角三角形,
∴FD=DE=EF=1,
设F点横坐标为t,代入y=﹣x+2,则纵坐标是﹣t+2,则F的坐标是:(t,﹣t+2),E点坐标为(t+1,﹣t+1),
∴t(﹣t+2)=(t+1)•(﹣t+1),解得t=,
∴E点坐标为,
∴k=×= .
故选D.
二.填 空 题(共5小题,满分20分,每小题4分)
11. 计算的结果为_____.
【正确答案】-1
【详解】分析: 原式利用立方根定义,以及零指数幂法则计算即可求出值.
详解: 原式=−2+1=−1,
故答案为−1
点睛: 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
12. 如图,在菱形ABCD中,,则菱形ABCD的面积为_________.
【正确答案】2
【分析】
【详解】试题解析:如图,
∵菱形ABCD,
∴AD=AB,OD=OB,OA=OC,
∵∠DAB=60°,
∴△ABD为等边三角形,
∴BD=AB=2,
∴OD=1,
在Rt△AOD中,根据勾股定理得:AO=,
∴AC=2,
则S菱形ABCD=AC•BD=2,
故答案为2
考点:菱形的性质.
13. 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是_____%(注:利润率=×).
【正确答案】17%
【详解】分析:本题可设原利润率是x,进价为a,则售价为a(1+x),由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,据此可得出方程解之即可求解.
详解:设原利润率是x,进价为a,则售价为a(1+x),
根据题意得:-x=8%,
解之得:x=0.17
所以原来的利润率是17%.
点睛:利润率的计算公式:利润率=,根据利润率的计算公式表示出现在的利润率,根据题意列方程即可解决问题.
14. 用等分圆周的方法,在半径为1的圆中画出如图所示图形,则图中阴影部分的面积为______.
【正确答案】π-
【详解】解:如图,设 的中点为P,连接OA,OP,AP,
△OAP的面积是:×12=,
扇形OAP的面积是:S扇形=,
AP直线和AP弧面积:S弓形=﹣,
阴影面积:3×2S弓形=π﹣.
故答案为π﹣.
本题考查扇形面积的计算.
15. 二次函数(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:
①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有______(请将结论正确的序号全部填上)
【正确答案】①③.
【详解】解:①∵a<0,∴抛物线开口向下,∵图象与x轴交点A、B的横坐标分别为﹣3,1,∴当x=﹣4时,y<0,即16a﹣4b+c<0;
故①正确;
②∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴抛物线的对称轴是:x=﹣1,∵P(﹣5,y1),Q(,y2),﹣1﹣(﹣5)=4,﹣(﹣1)=3.5,由对称性得:(﹣4.5,y3)与Q(,y2)是对称点,∴则y1<y2;
故②没有正确;
③∵=﹣1,∴b=2a,当x=1时,y=0,即a+b+c=0,3a+c=0,a=﹣c;
④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵AO=1,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=,与b=2a、a+b+c=0联立组成解方程组,解得b=﹣;
同理当AB=AC=4时,∵AO=1,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=,与b=2a、a+b+c=0联立组成解方程组,解得b=﹣;
同理当AC=BC时,在△AOC中,AC2=1+c2,在△BOC中BC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程无实数解.
经解方程组可知有两个b值满足条件.
故⑤错误.
综上所述,正确结论是①③.
故答案为①③.
点睛:本题考查了等腰三角形的判定、方程组的解、抛物线与坐标轴的交点、二次函数的图象与系数的关系:当a<0,抛物线开口向下;抛物线的对称轴为直线x=;抛物线与y轴的交点坐标为(0,c),与x轴的交点为(x1,0)、(x2,0).
三.解 答 题(共9小题,满分90分)
16. 解关于x的没有等式组:.
【正确答案】见解析
【详解】试题分析:利用没有等式组的求解方法,求得各没有等式组的解集,然后分别讨论a的取值,即可求得答案.
试题解析:∵,
由①得:(a﹣1)x>2a﹣3③,
由②得:x>,
当a﹣1>0时,解③得:x>,
若≥,即a≥时,
没有等式组的解集为:x>;
当1≤a<时,没有等式组的解集为:x≥;
当a﹣1<0时,解③得:x<,
若≥,即a≤时,<x<;
当a<1时,没有等式组的解集为:<x<.
∴原没有等式组的解集为:当a≥时,x>;
当a<时,<x<.
17. 已知:ax=by=cz=1,求的值.
【正确答案】3
【分析】由于ax=by=cz=1,那么,而所求式子可变形为,通分后可得,再把 的值代入即可求值.
【详解】∵ax=by=cz=1,
∴ .
∴
=
=
=
=1+1+1
=3.
解决本题的关键突破口是掌握分式的化简.注意灵活的组合,通分后会使计算简便.
18. 某中学将组织七年级学生春游,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.
(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.
聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?
(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的只租用60座客车,正好坐满且比甲同学的少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的吗”?如果是你,你该如何设计租车,并说明理由.
【正确答案】(1)45座的客车每辆每天的租金为200元,60座的客车每辆每天的租金为300元;(2)比甲和乙更经济的是:租用45座的客车4辆,60座的客车1辆.这个的费用为1100元,且能让所有同学都能有座位.
【分析】根据题意可知,本题中的相等关系是“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,的租金为1600元”,列方程组求解即可.
【详解】(1)设45座客车每天租金x元,60座客车每天租金y元,
则
解得
故45座客车每天租金200元,60座客车每天租金300元;
(2)设学生的总数是a人,
则
解得:a=240,
∵240÷45=5…15,
∴甲同学的为租用6辆45座客车,所需要的费用为:200×6=1200元;
∵240÷60=4,
∴乙同学的为租用4辆60座客车,所需费用为300×4=1200(元);
设45座客车租m辆,60座客车租n辆,所需费用为W,
则45m+60n≥240,(6≥m≥1,4≥n≥1)
∴n≥4−
所需要的费用为W=200m+300n≥200m+300(4−)=1200−25m,
∴当m越大时,W越小,
∴当n=1时,mmax==4,
∴Wmin=1200−25×4=1100元;
∴设计为:租45座客车4辆、60座客车1辆;费用1100元,比较经济.
【点晴】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.本题还需注意“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,的租金为1600元”的关系.
19. 如图,在□ABCD中,平分交于点,平分交于点.
求证:(1);
(2)若,则判断四边形是什么四边形,请证明你的结论.
【正确答案】(1)见解析;(2)菱形,理由见解析 .
【分析】(1)由平行四边形ABCD可得出的条件有:①AB=CD,②∠A=∠C,③∠ABC=∠CDA;已知BE、CD分别是等角∠ABD、∠CDA的平分线,易证得∠ABE=∠CDF④;联立①②④,即可由ASA判定所求的三角形全等;
(2)由(1)的全等三角形,易证得DE=BF,那么DE和BF平行且相等,由此可判定四边形BEDF是平行四边形,根据对角线垂直的平行四边形是菱形即可得出EBFD的形状.
【详解】(1)∵四边形是平行四边,
∴
∵平分 平分
∴
∴
(2)由得
在平行四边形中,
∴
∴四边形平行四边形
若则四边形是菱形
20. 现今“运动”被越来越多的人关注和喜爱,某兴趣小组随机了我市50名教师某日“运动”中的步数情况进行统计整理,绘制了如下的统计图表(没有完整):
步数
频数
频率
0≤x<4000
8
a
4000≤x<8000
15
0.3
8000≤x<12000
12
b
12000≤x<16000
c
0.2
16000≤x<20000
3
0.06
20000≤x<24000
d
0.04
请根据以上信息,解答下列问题:
(1)写出a,b,c,d的值并补全频数分布直方图;
(2)本市约有37800名教师,用的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.
【正确答案】(1)a=0.16,b=0.24,c=10,d=2,补全频数分布直方图见解析;(2)11340名;(3).
【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.
【详解】(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,
补全频数分布直方图如下:
(2)37800×(0.2+0.06+0.04)=11340,
答:估计日行走步数超过12000步(包含12000步)教师有11340名;
(3)设16000≤x<20000的3名教师分别为A、B、C,
20000≤x<24000的2名教师分别为X、Y,
画树状图如下:
由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.
本题考查了列表法与树状图法、用样本估计总体、频数(率)分布表、频数(率)分布直方图等知识点,熟练掌握这些知识点是本题解题的关键.
21. 在东西方向的海岸线上有一长为的码头(如图),在码头西端的正西处有一观察站.某时刻测得一艘匀速直线航行的轮船位于的北偏西,且与相距的处;,又测得该轮船位于的北偏东,且与相距的处.
(1)求该轮船航行的速度.
(2)如果该轮船没有改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.
【正确答案】(1);(2)轮船没有改变航向继续航行,正好能行至码头靠岸.
【分析】(1)根据,由勾股定理可求出BC的长度,航速=路程/时间即可;
(2)作,,垂足分别为、,设直线交于点,根据已知条件和构造的直角三角形,求出BD、CE、AE的长度,再根据,分别求出EF、AF的长,根据,得出轮船没有改变航向继续航行,正好能行至码头靠岸.
【详解】(1)由题意,得,∴.
∴轮船航行的速度为.
(2)能.作,,垂足分别为、,设直线交于点.
则,,.
∵,,∴.
又,∴.
∴.∴.
∴.∴.
∵,∴轮船没有改变航向继续航行,正好能行至码头靠岸.
本题属于实际应用题,需要注意的是,的结论,要根据,得出轮船没有改变航向继续航行,正好能行至码头靠岸.
22. 某学校要制作一批工作的宣传材料.甲公司提出:每份材料收费10元,另收1000元的版面设计费;乙公司提出:每份材料收费20元,没有收版面设计费.请你帮助该学校选择制作.
【正确答案】当制作材料为100份时,两家公司收费一样,选择哪家都可行;当制作材料超过100份时,选择甲公司比较合算;当制作材料少于100份时,选择乙公司比较合算.
【详解】试题分析:设制作x份材料时,甲公司收费y1元,乙公司收费y2元,分别表示出甲乙两公司的收费标准,然后通过y1=y2, y1>y2,y1<y2,分别求出x的值或范围,比较即可设计.
试题解析:设制作x份材料时,甲公司收费y1元,乙公司收费y2元,
则y1=10x+1000,y2=20x,
由y1=y2,得10x+1000=20x,解得x=100
由y1>y2,得10x+1000>20x,解得x<100
由y1<y2,得10x+1000<20x,解得x>100
所以,当制作材料为100份时,两家公司收费一样,选择哪家都可行;
当制作材料超过100份时,选择甲公司比较合算;
当制作材料少于100份时,选择乙公司比较合算.
23. 如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.
(1)求证:△ADC∽△CDB;
(2)若AC=2,AB=CD,求⊙O半径.
【正确答案】(1)见解析;(2)
【详解】分析: (1)首先连接CO,根据CD与⊙O相切于点C,可得:∠OCD=90°;然后根据AB是圆O的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD,即可推得△ADC∽△CDB.
(2)首先设CD为x,则AB=32x,OC=OB=34x,用x表示出OD、BD;然后根据△ADC∽△CDB,可得:ACCB=CDBD,据此求出CB的值是多少,即可求出⊙O半径是多少.
详解:
(1)证明:如图,连接CO,
,
∵CD与⊙O相切于点C,
∴∠OCD=90°,
∵AB是圆O的直径,
∴∠ACB=90°,
∴∠ACO=∠BCD,
∵∠ACO=∠CAD,
∴∠CAD=∠BCD,
在△ADC和△CDB中,
∴△ADC∽△CDB.
(2)解:设CD为x,
则AB=x,OC=OB=x,
∵∠OCD=90°,
∴OD===x,
∴BD=OD﹣OB=x﹣x=x,
由(1)知,△ADC∽△CDB,
∴=,
即,
解得CB=1,
∴AB==,
∴⊙O半径是.
点睛: 此题主要考查了切线性质和应用,以及勾股定理的应用,要熟练掌握.
24. 如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经
过点A、C、B的抛物线的一部分C1与点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封
闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:(<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积?若存在,求出△PBC面积的值;若没有存在,请说明理由;
(3)当△BDM为直角三角形时,求的值.
【正确答案】(1)A(,0)、B(3,0).
(2)存在.S△PBC值为
(3)或时,△BDM为直角三角形.
【分析】(1)在中令y=0,即可得到A、B两点的坐标.
(2)先用待定系数法得到抛物线C1的解析式,由S△PBC = S△POC+ S△BOP–S△BOC得到△PBC面积的表达式,根据二次函数最值原理求出值.
(3)先表示出DM2,BD2,MB2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m的值.
【详解】解:(1)令y=0,则,
∵m<0,∴,解得:,.
∴A(,0)、B(3,0).
(2)存在.理由如下:
∵设抛物线C1的表达式为(),
把C(0,)代入可得,.
∴C1的表达式为:,即.
设P(p,),
∴ S△PBC = S△POC+ S△BOP–S△BOC=.
∵<0,∴当时,S△PBC值为.
(3)由C2可知: B(3,0),D(0,),M(1,),
∴BD2=,BM2=,DM2=.
∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:
当∠BMD=90°时,BM2+ DM2= BD2,即+=,
解得:,(舍去).
当∠BDM=90°时,BD2+ DM2= BM2,即+=,
解得:,(舍去) .
综上所述,或时,△BDM为直角三角形.
2022-2023学年上海市虹口区中考数学专项突破仿真模拟卷(二模三模)含解析: 这是一份2022-2023学年上海市虹口区中考数学专项突破仿真模拟卷(二模三模)含解析
2022-2023学年上海市虹口区中考数学专项突破仿真模拟卷(一模二模)含解析: 这是一份2022-2023学年上海市虹口区中考数学专项突破仿真模拟卷(一模二模)含解析
【中考数学】2022-2023学年上海市奉贤区专项突破仿真模拟卷(一模二模)含解析: 这是一份【中考数学】2022-2023学年上海市奉贤区专项突破仿真模拟卷(一模二模)含解析,共50页。试卷主要包含了选一选,填 空 题,解 答 题等内容,欢迎下载使用。