终身会员
搜索
    上传资料 赚现金

    2022年中考数学分类汇编22讲专题10 平行线与三角形

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      专题10 平行线与三角形-(老师版) .docx
    • 练习
      专题10 平行线与三角形-(学生版) .docx
    专题10 平行线与三角形-(老师版) 第1页
    专题10 平行线与三角形-(老师版) 第2页
    专题10 平行线与三角形-(老师版) 第3页
    专题10 平行线与三角形-(学生版) 第1页
    专题10 平行线与三角形-(学生版) 第2页
    专题10 平行线与三角形-(学生版) 第3页
    还剩45页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年中考数学分类汇编22讲专题10 平行线与三角形

    展开

    这是一份2022年中考数学分类汇编22讲专题10 平行线与三角形,文件包含专题10平行线与三角形-老师版docx、专题10平行线与三角形-学生版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。


     专题10 平行线与三角形
    一.选择题
    1.(2022·内蒙古通辽)如图,一束光线先后经平面镜,反射后,反射光线与平行,当时,的度数为(     )

    A. B. C. D.
    【答案】A
    【分析】根据题意得:∠ABM=∠OBC, ∠BCO=∠DCN,然后平行线的性质可得∠BCD =70°,即可求解.
    【详解】解:根据题意得:∠ABM=∠OBC, ∠BCO=∠DCN,
    ∵∠ABM=35°,∴∠OBC=35°,∴∠ABC=180°-∠ABM-∠OBC=180°-35°-35°=110°,
    ∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°-∠ABC=70°,
    ∵∠BCO+∠BCD+∠DCN=180°, ∠BCO=∠DCN,
    ∴.故选:A
    【点睛】本题主要考查了平行线的性质,熟练掌握两直线平行,同旁内角互补是解题的关键.
    2.(2022·河北)要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是(       )

    A.Ⅰ可行、Ⅱ不可行 B.Ⅰ不可行、Ⅱ可行 C.Ⅰ、Ⅱ都可行 D.Ⅰ、Ⅱ都不可行
    【答案】C
    【分析】用夹角可以划出来的两条线,证明方案Ⅰ和Ⅱ的结果是否等于夹角,即可判断正误
    【详解】方案Ⅰ:如下图,即为所要测量的角


    ∵∴∴故方案Ⅰ可行
    方案Ⅱ:如下图,即为所要测量的角

    在中:
    则:故方案Ⅱ可行故选:C
    【点睛】本题考查平行线的性质和判定,三角形的内角和;本题的突破点是用可画出夹角的情况进行证明
    3.(2022·河南)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为(       )

    A.26° B.36° C.44° D.54°
    【答案】B
    【分析】根据垂直的定义可得,根据平角的定义即可求解.
    【详解】解: EO⊥CD,,
    ,.故选:B .
    【点睛】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.
    4.(2022·湖北鄂州)如图,直线l1l2,点C、A分别在l1、l2上,以点C为圆心,CA长为半径画弧,交l1于点B,连接AB.若∠BCA=150°,则∠1的度数为(  )

    A.10° B.15° C.20° D.30°
    【答案】B
    【分析】由作图得为等腰三角形,可求出,由l1l2得,从而可得结论.
    【详解】解:由作图得,,∴为等腰三角形,∴
    ∵∠BCA=150°,∴
    ∵l1l2∴故选B
    【点睛】本题主要考查了等腰三角形的判定与性质,平行线的性质等知识,求出是解答本题的关键.
    5.(2022·湖南郴州)如图,直线,且直线a,b被直线c,d所截,则下列条件不能判定直线的是(       )

    A. B. C. D.
    【答案】C
    【分析】利用平行线的判定条件进行分析即可得出结果.
    【详解】解:A、当时,;故A不符合题意;
    B、当时,;故B不符合题意;
    C、当时,;故C符合题意;
    D、∵,则,∵,则,∴;故D不符合题意;故选:C
    【点睛】本题主要考查平行线的判定,解答的关键是熟记平行线的判定条件并灵活运用.
    6.(2022·山东潍坊)如图是小亮绘制的潜望镜原理示意图,两个平面镜的镜面与平行,入射光线l与出射光线m平行.若入射光线l与镜面的夹角,则的度数为(       )

    A. B. C. D.
    【答案】C
    【分析】由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,可求出∠5,由//可得∠6=∠5
    【详解】解:由入射光线与镜面的夹角等于反射光线与镜面的夹角,可得∠1=∠2,
    ∵∴∴
    ∵//∴ 故选:C
    【点睛】本题主要考查了平行线的性质,熟记两直线平行,内错角相等是解答本题的关键.
    7.(2022·北京)如图,利用工具测量角,则的大小为(       )

    A.30° B.60° C.120° D.150°
    【答案】A
    【分析】利用对顶角相等求解.
    【详解】解:量角器测量的度数为30°,
    由对顶角相等可得,.故选A.
    【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.
    8.(2022·黑龙江)如图,中,,AD平分与BC相交于点D,点E是AB的中点,点F是DC的中点,连接EF交AD于点P.若的面积是24,,则PE的长是(       )

    A.2.5 B.2 C.3.5 D.3
    【答案】A
    【分析】连接DE,取AD的中点G,连接EG,先由等腰三角形“三线合一“性质,证得AD⊥BC,BD=CD,再由E是AB的中点,G是AD的中点,求出S△EGD=3,然后证△EGP≌△FDP(AAS),得GP=CP=1.5,从而得DG=3,即可由三角形面积公式求出EG长,由勾股定理即可求出PE长.
    【详解】解:如图,连接DE,取AD的中点G,连接EG,
    ∵AB=AC,AD平分与BC相交于点D,
    ∴AD⊥BC,BD=CD,
    ∴S△ABD==12,
    ∵E是AB的中点,
    ∴S△AED==6,
    ∵G是AD的中点,
    ∴S△EGD==3,
    ∵E是AB的中点,G是AD的中点,
    ∴EGBC,EG=BD=CD,
    ∴∠EGP=∠FDP=90°,
    ∵F是CD的中点,
    ∴DF=CD,
    ∴EG=DF,
    ∵∠EPG=∠FPD,
    ∴△EGP≌△FDP(AAS),
    ∴GP=PD=1.5,
    ∴GD=3,
    ∵S△EGD==3,即,
    ∴EG=2,
    在Rt△EGP中,由勾股定理,得
    PE==2.5,
    故选:A.

    【点睛】本题考查等腰三角形的性质,三角形面积,全等三角形判定与性质,勾股定理,熟练掌握三角形中线分三角形两部分的面积相等是解题的关键.
    9.(2022·贵州遵义)如图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形.若,,则点到的距离为(       )

    A. B. C.1 D.2
    【答案】B
    【分析】根据题意求得,进而求得,进而等面积法即可求解.
    【详解】解:在中,
    ,,


    设到的距离为,


    故选B.
    【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,掌握以上知识是解题的关键.
    10.(2022·广西)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等,如己知△ABC中,∠A=30°, AC=3,∠A所对的边为,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为(       )

    A. B. C.或 D.或
    【答案】C
    【分析】分情况讨论,当△ABC是一个直角三角形时,当△AB1C是一个钝角三角形时,根据含30°的直角三角形的性质及勾股定理求解即可.
    【详解】如图,当△ABC是一个直角三角形时,即,



    如图,当△AB1C是一个钝角三角形时,

    过点C作CD⊥AB1,









    综上,满足已知条件的三角形的第三边长为或,
    故选:C.
    【点睛】本题考查了根据已知条件作三角形,涉及含30°的直角三角形的性质及勾股定理,熟练掌握知识点是解题的关键.
    11.(2022·山东烟台)如图,某海域中有A,B,C三个小岛,其中A在B的南偏西40°方向,C在B的南偏东35°方向,且B,C到A的距离相等,则小岛C相对于小岛A的方向是(  )

    A.北偏东70° B.北偏东75° C.南偏西70° D.南偏西20°
    【答案】A
    【分析】根据题意可得∠ABC=75°,AD∥BE,AB=AC,再根据等腰三角形的性质可得∠ABC=∠C=75°,从而求出∠BAC的度数,然后利用平行线的性质可得∠DAB=∠ABE=40°,从而求出∠DAC的度数,即可解答.
    【详解】解:如图:由题意得:
    ∠ABC=∠ABE+∠CBE=40°+35°=75°,AD∥BE,AB=AC,
    ∴∠ABC=∠C=75°,
    ∴∠BAC=180°﹣∠ABC﹣∠C=30°,
    ∵AD∥BE,
    ∴∠DAB=∠ABE=40°,
    ∴∠DAC=∠DAB+∠BAC=40°+30°=70°,
    ∴小岛C相对于小岛A的方向是北偏东70°,故选:A.

    【点睛】本题考查了方向角,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.
    12.(2022·河北)如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是△ABC的(       )

    A.中线 B.中位线 C.高线 D.角平分线
    【答案】D
    【分析】根据折叠的性质可得,作出选择即可.
    【详解】解:如图,

    ∵由折叠的性质可知,
    ∴AD是的角平分线,故选:D.
    【点睛】本题考查折叠的性质和角平分线的定义,理解角平分线的定义是解答本题的关键.
    13.(2022·广西贺州)如图,在Rt△ABC中,∠C=90°,∠B=56°,则∠A的度数为(       )


    A. B. C. D.
    【答案】A
    【分析】根据直角三角形的两个锐角互余,即可得出∠A的度数.
    【详解】解:∵Rt△ABC中,∠C=90°,∠B=56°,
    ∴∠A=90°-∠B=90°-56°=34°;
    故选:A.
    【点睛】本题考查了直角三角形的性质:直角三角形的两个锐角互余;熟练掌握直角三角形的性质,并能进行推理计算是解决问题的关键.
    14.(2022·湖南永州)如图,在中,,,点为边的中点,,则的长为(   )

    A. B. C.2 D.4
    【答案】C
    【分析】根据三角形内角和定理可得∠A=30°,由直角三角形斜边上的中线的性质得出AC=2BD=4,再利用含30度角的直角三角形的性质求解即可.
    【详解】解:∵∠ABC=90°,∠C=60°,
    ∴∠A=30°,
    ∵点D为边AC的中点,BD=2
    ∴AC=2BD=4,
    ∴BC=,
    故选:C.
    【点睛】题目主要考查三角形内角和定理及直角三角形斜边上中线的性质,含30度角的直角三角形
    的性质等,理解题意,综合运用这些知识点是解题关键.
    15.(2022·湖南永州)下列多边形具有稳定性的是(   )
    A.B.C.D.
    【答案】D
    【分析】利用三角形具有稳定性直接得出答案.
    【详解】解:三角形具有稳定性,四边形、五边形、六边形都具有不稳定性,
    故选D.
    【点睛】本题考查三角形的特性,牢记三角形具有稳定性是解题的关键.
    16.(2022·广西玉林)请你量一量如图中边上的高的长度,下列最接近的是(     )

    A. B. C. D.
    【答案】D
    【分析】作出三角形的高,然后利用刻度尺量取即可.
    【详解】解:如图所示,过点A作AO⊥BC,

    用刻度尺直接量得AO更接近2cm,故选:D.
    【点睛】题目主要考查利用刻度尺量取三角形高的长度,作出三角形的高是解题关键.
    17.(2022·黑龙江大庆)下列说法不正确的是(     )
    A.有两个角是锐角的三角形是直角或钝角三角形
    B.有两条边上的高相等的三角形是等腰三角形
    C.有两个角互余的三角形是直角三角形
    D.底和腰相等的等腰三角形是等边三角形
    【答案】A
    【分析】利用等腰三角形的性质与判定、等边三角形的性质与判定、直角三角形的判定,对各选项逐项分析可得出正确答案.
    【详解】解:A、设∠1、∠2为锐角,
    因为:∠1+∠2+∠3=180°,
    所以:∠3可以为锐角、直角、钝角,所以该三角形可以是锐角三角形,也可以是直角或钝角三角形,故A选项不正确,符合题意;
    B、如图,在△ABC中,BE⊥AC,CD⊥AB,且BE=CD.

    ∵BE⊥AC,CD⊥AB,
    ∴∠CDB=∠BEC=90°,
    在Rt△BCD与Rt△CBE中,

    ∴Rt△BCD≌Rt△CBE(HL),
    ∴∠ABC=∠ACB,
    ∴AB=AC,即△ABC是等腰三角形.,
    故B选项正确,不符合题意;
    C、根据直角三角形的判定:有两个角互余的三角形是直角三角形,,
    故C选项正确,不符合题意;
    D、底和腰相等的等腰三角形是等边三角形,
    故D选项正确,不符合题意;故选:A.
    【点睛】本题综合考查了等腰三角形的性质与判定、等边三角形的性质与判定、直角三角形的判定,要求学生在学习过程中掌握三角形的各种性质及推论,不断提升数学学习的能力.
    18.(2022·广西梧州)如图,在中,是的角平分线,过点D分别作,垂足分别是点E,F,则下列结论错误的是(       )


    A. B. C. D.
    【答案】C
    【分析】根据等腰三角形底边上的高线、顶角的角平分线、底边上的中线这三线合一及角平分线的性质即可判断求解.
    【详解】解:∵是的角平分线,
    ∴,
    ∴,故选项A、D结论正确,不符合题意;
    又是的角平分线,,
    ∴,故选项B结论正确,不符合题意;
    由已知条件推不出,故选项C结论错误,符合题意;故选:C.
    【点睛】本题考察了等腰三角形的性质及角平分线的性质,属于基础题,熟练掌握其性质即可.
    19.(2022·四川乐山)如图,等腰△ABC的面积为2,AB=AC,BC=2.作AE∥BC且AE=BC.点P是线段AB上一动点,连接PE,过点E作PE的垂线交BC的延长线于点F,M是线段EF的中点.那么,当点P从A点运动到B点时,点M的运动路径长为(       )


    A. B.3 C. D.4
    【答案】D
    【分析】当P与A重合时,点F与C重合,此时点M在N处,当点P与B重合时,如图,点M的运动轨迹是线段MN.求出CF的长即可解决问题.
    【详解】解:过点A作AD⊥BC于点D,连接CE,
    ∵AB=AC,
    ∴BD=DC=BC=1,
    ∵AE=BC,
    ∴AE=DC=1,
    ∵AE∥BC,
    ∴四边形AECD是矩形,
    ∴S△ABC=BC×AD=×2×AD=2,
    ∴AD=2,则CE=AD=2,
    当P与A重合时,点F与C重合,此时点M在CE的中点N处,
    当点P与B重合时,如图,点M的运动轨迹是线段MN.


    ∵BC=2,CE=2,
    由勾股定理得BE=4,
    cos∠EBC=,即,
    ∴BF=8,
    ∵点N是CE的中点,点M是EF的中点,
    ∴MN=BF=4,
    ∴点M的运动路径长为4,
    故选:D.
    【点睛】本题考查点的轨迹、矩形的判定和性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找点M的运动轨迹,学会利用起始位置和终止位置寻找轨迹,属于中考填空题中的压轴题.
    20.(2022·四川凉山)下列长度的三条线段能组成三角形的是(       )
    A.3,4,8 B.5,6,11 C.5,6,10 D.5,5,10
    【答案】C
    【分析】根据三角形的三边关系定理(任意两边之和大于第三边)逐项判断即可得.
    【详解】解:A、,不能组成三角形,此项不符题意;
    B、,不能组成三角形,此项不符题意;
    C、,能组成三角形,此项符合题意;
    D、,不能组成三角形,此项不符题意;
    故选:C.
    【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.
    21.(2022·四川成都)如图,在和中,点,,,在同一直线上,,,只添加一个条件,能判定的是(       )

    A. B. C. D.
    【答案】B
    【分析】根据三角形全等的判定做出选择即可.
    【详解】A、,不能判断,选项不符合题意;
    B、,利用SAS定理可以判断,选项符合题意;
    C、,不能判断,选项不符合题意;
    D、,不能判断,选项不符合题意;
    故选:B.
    【点睛】本题考查三角形全等的判定,根据SSS、SAS、ASA、AAS判断三角形全等,找出三角形全等的条件是解答本题的关键.
    22.(2022·山东聊城)如图,中,若,,根据图中尺规作图的痕迹推断,以下结论错误的是(       )

    A. B. C. D.
    【答案】D
    【分析】根据线段的垂直平分线的性质,角平分线的定义,三角形外角的性质,直角三角形的性质判断即可.
    【详解】∵,,∴∠B=180°-∠BAC-∠ACB=30°,
    A.由作图可知,平分,∴,
    故选项A正确,不符合题意;
    B.由作图可知,MQ是BC的垂直平分线,∴,
    ∵,∴,故选项B正确,不符合题意;
    C.∵,,∴,
    ∵,∴,故选项C正确,不符合题意;
    D.∵,,∴;
    故选项D错误,符合题意.故选:D.
    【点睛】本题考查了线段的垂直平分线的性质,角平分线的定义,三角形外角的性质,直角三角形的性质等知识,解题的关键是读懂图象信息.
    23.(2022·海南)如图,直线,是等边三角形,顶点B在直线n上,直线m交于点E,交于点F,若,则的度数是(       )

    A. B. C. D.
    【答案】B
    【分析】根据等边三角形的性质可得∠A=60°,再由三角形外角的性质可得∠AEF=∠1-∠A=80°,从而得到∠BEF=100°,然后根据平行线的性质,即可求解.
    【详解】解:∵是等边三角形,
    ∴∠A=60°,
    ∵∠1=140°,
    ∴∠AEF=∠1-∠A=80°,
    ∴∠BEF=180°-∠AEF=100°,
    ∵,∴∠2=∠BEF=100°.故选:B
    【点睛】本题主要考查了等边三角形的性质,三角形外角的性质,平行线的性质,熟练掌握等边三角形的性质,三角形外角的性质,平行线的性质是解题的关键.
    24.(2022·黑龙江齐齐哈尔)如图所示,直线a∥b,点A在直线a上,点B在直线b上,AC=BC,∠C=120°,∠1=43°,则∠2的度数为(     )

    A.57° B.63° C.67° D.73°
    【答案】D
    【分析】根据等腰三角形的性质可求出,可得出,再根据平行线的性质可得结论.
    【详解】解:∵AC=BC,∴是等腰三角形,
    ∵ ∴

    ∵a∥b,∴ 故选:D
    【点睛】本题主要考查了等腰三角形的判定与性质,以及平行线的性质,求出是解答本题的关键.
    25.(2022·湖北恩施)已知直线,将含30°角的直角三角板按图所示摆放.若,则(       )


    A.120° B.130° C.140° D.150°
    【答案】D
    【分析】根据平行线的性质可得∠3=∠1=120°,再由对顶角相等可得∠4=∠3=120°,然后根据三角形外角的性质,即可求解.
    【详解】解:如图,

    根据题意得:∠5=30°,
    ∵,∴∠3=∠1=120°,∴∠4=∠3=120°,
    ∵∠2=∠4+∠5,∴∠2=120°+30°=150°.故选:D
    【点睛】本题主要考查了平行线的性质,对顶角相等,三角形外角的性质,熟练掌握平行线的性质,对顶角相等,三角形外角的性质是解题的关键.
    二.填空题
    26.(2022·辽宁锦州)如图,在中,,点D为的中点,将绕点D逆时针旋转得到,当点A的对应点落在边上时,点在的延长线上,连接,若,则的面积是____________.

    【答案】
    【分析】先证明 是等边三角形,再证明,再利用直角三角形角对应的边是斜边的一般分别求出和,再利用勾股定理求出,从而求得的面积.
    【详解】解:如下图所示,设与交于点O,连接和,


    ∵点D为的中点,,
    ∴,,是的角平分线,是,
    ∴,

    ∵,
    ∴ 是等边三角形,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,


    ∵,

    ∴,,
    ∴ .
    【点睛】本题考查等腰三角形、等边三角形和直角三角形的性质,证明 是等边三角形是解本题的关键.
    27.(2022·湖南郴州)如图.在中,,.以点A为圆心,以任意长为半径作弧交AB,AC于D,E两点;分别以点D,E为圆心,以大于长为半径作弧,在内两弧相交于点P;作射线AP交BC于点F,过点F作,垂足用G.若,则的周长等于________cm.

    【答案】8
    【分析】由角平分线的性质,得到,然后求出的周长即可.
    【详解】解:根据题意,
    在中,,,
    由角平分线的性质,得,

    ∴的周长为:

    故答案为:8
    【点睛】本题考查了角平分线的性质,解题的关键是掌握角平分线的性质.
    28.(2022·江苏常州)如图,在中,是中线的中点.若的面积是1,则的面积是______.

    【答案】2
    【分析】根据的面积的面积,的面积的面积计算出各部分三角形的面积.
    【详解】解:是边上的中线,为的中点,
    根据等底同高可知,的面积的面积,
    的面积的面积的面积,
    故答案为:2.
    【点睛】本题考查了三角形的面积,解题的关键是利用三角形的中线平分三角形面积进行计算.
    29.(2022·黑龙江哈尔滨)在中,为边上的高,,,则是___________度.
    【答案】40或80##80或40

    【分析】根据题意,由于类型不确定,需分三种情况:高在三角形内部、高在三角形边上和高在三角形外部讨论求解.
    【详解】解:根据题意,分三种情况讨论:
    ①高在三角形内部,如图所示:

    在中,为边上的高,,



    ②高在三角形边上,如图所示:

    可知,

    故此种情况不存在,舍弃;
    ③高在三角形外部,如图所示:

    在中,为边上的高,,



    综上所述:或,
    故答案为:或.
    【点睛】本题考查求角度问题,在没有图形的情况下,必须考虑清楚各种不同的情况,根据题意分情况讨论是解决问题的关键.
    30.(2022·四川成都)如图,在中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交边于点.若,,,则的长为_________.

    【答案】7
    【分析】连接EC,依据垂直平分线的性质得.由已知易得,在Rt△AEC中运用勾股定理求得AE,即可求得答案.
    【详解】解:由已知作图方法可得,是线段的垂直平分线,
    连接EC,如图,


    所以,
    所以,
    所以∠BEC=∠CEA=90°,
    因为,,
    所以,
    在中,,
    所以,
    因此的长为7.
    故答案为:7.
    【点睛】本题主要考查中垂线性质,等腰三角形的性质,勾股定理等知识,解题的关键是掌握中垂线上一点到线段两端点距离相等,由勾股定理求得即可.
    31.(2022·内蒙古通辽)在中,,有一个锐角为,,若点在直线上(不与点,重合),且,则的长为_______.
    【答案】或9或3
    【分析】分∠ABC=60、∠ABC=30°两种情况,利用数形结合的方法,分别求解即可.
    【详解】解:当∠ABC=60°时,则∠BAC=30°,
    ∴,
    ∴,
    当点P在线段AB上时,如图,


    ∵,
    ∴∠BPC=90°,即PC⊥AB,
    ∴;
    当点P在AB的延长线上时,
    ∵,∠PBC=∠PCB+∠CPB,
    ∴∠CPB=30°,
    ∴∠CPB=∠PCB,
    ∴PB=BC=3,
    ∴AP=AB+PB=9;
    当∠ABC=30°时,则∠BAC=60°,如图,


    ∴,
    ∵,
    ∴∠APC=60°,
    ∴∠ACP=60°,
    ∴∠APC=∠PAC=∠ACP,
    ∴△APC为等边三角形,
    ∴PA=AC=3.
    综上所述,的长为或9或3.
    故答案为:或9或3
    【点睛】本题是解直角三角形综合题,主要考查了含30度角的直角三角形、解直角三角形,等边三角形的判定和性质等,分类求解是本题解题的关键.
    32.(2022·湖南岳阳)如图,在中,,于点,若,则______.

    【答案】3
    【分析】根据等腰三角形的性质可知是的中点,即可求出的长.
    【详解】解:∵,,
    ∴,
    ∵,
    ∴,
    故答案为:3.
    【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形三线合一是解题的关键.
    33.(2022·江苏无锡)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=________°;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是________.

    【答案】     80     ##
    【分析】利用SAS证明△BDC≌△AEC,得到∠DBC=∠EAC=20°,据此可求得∠BAF的度数;利用全等三角形的性质可求得∠AFB=60°,推出A、B、C、F四个点在同一个圆上,当BF是圆C的切线时,即当CD⊥BF时,∠FBC最大,则∠FBA最小,此时线段AF长度有最小值,据此求解即可.
    【详解】解:∵△ABC和△DCE都是等边三角形,
    ∴AC=BC,DC=EC,∠BAC=∠ACB=∠DCE=60°,
    ∴∠DCB+∠ACD=∠ECA+∠ACD=60°,
    即∠DCB =∠ECA,
    在△BCD和△ACE中,,
    ∴△ACE≌△BCD( SAS),
    ∴∠EAC=∠DBC,
    ∵∠DBC=20°,
    ∴∠EAC=20°,
    ∴∠BAF=∠BAC+∠EAC=80°;
    设BF与AC相交于点H,如图:

    ∵△ACE≌△BCD
    ∴AE=BD,∠EAC=∠DBC,且∠AHF=∠BHC,
    ∴∠AFB=∠ACB=60°,
    ∴A、B、C、F四个点在同一个圆上,
    ∵点D在以C为圆心,3为半径的圆上,当BF是圆C的切线时,即当CD⊥BF时,∠FBC最大,则∠FBA最小,
    ∴此时线段AF长度有最小值,
    在Rt△BCD中,BC=5,CD=3,
    ∴BD=4,即AE=4,
    ∴∠FDE=180°-90°-60°=30°,
    ∵∠AFB=60°,
    ∴∠FDE=∠FED=30°,
    ∴FD=FE,
    过点F作FG⊥DE于点G,
    ∴DG=GE=,
    ∴FE=DF==,
    ∴AF=AE-FE=4-,
    故答案为:80;4-.
    【点睛】本题考查了旋转的性质,等边三角形的性质,圆周角定理,切线的性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.
    34.(2022·湖南永州)我国古代数学家赵爽创制了一幅“赵爽弦图”,极富创新意识地给出了勾股定理的证明.如图所示,“赵爽弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是25,小正方形的面积是1,则______.

    【答案】3
    【分析】根据题意得出AB=BC=CD=DA=5,EF=FG=GH=HE=1,设AF=DE=CH=BG=x,结合图形得出AE=x-1,利用勾股定理求解即可得出结果.
    【详解】解:∵大正方形的面积是25,小正方形的面积是1,
    ∴AB=BC=CD=DA=5,EF=FG=GH=HE=1,
    根据题意,设AF=DE=CH=BG=x,
    则AE=x-1,
    在Rt∆AED中,

    即,
    解得:x=4(负值已经舍去),
    ∴x-1=3,
    故答案为:3.
    【点睛】题目主要考查正方形的性质,勾股定理解三角形,一元二次方程的应用等,理解题意,综合运用这些知识点是解题关键.
    35.(2022·黑龙江齐齐哈尔)在△ABC中,,,,则______________.
    【答案】或
    【分析】画出图形,分△ABC为锐角三角形和钝角三角形两种情况讨论即可.
    【详解】解:情况一:当△ABC为锐角三角形时,如图1所示:


    过A点作AH⊥BC于H,
    ∵∠B=45°,
    ∴△ABH为等腰直角三角形,
    ∴,
    在Rt△ACH中,由勾股定理可知:,
    ∴.
    情况二:当△ABC为钝角三角形时,如图2所示:
    由情况一知:,,
    ∴.
    故答案为:或.
    【点睛】本题考察了等腰直角三角形的性质及勾股定理的应用,本题的关键是能将△ABC分成锐角三角形或钝角三角形分类讨论.
    36.(2022·贵州遵义)如图,在等腰直角三角形中,,点,分别为,上的动点,且,.当的值最小时,的长为__________.

    【答案】
    【分析】过点作,且,证明,可得,当三点共线时,取得最小值,证明,即可求解.
    【详解】如图,过点作,且,连接,如图1所示,

    又,



    当三点共线时,取得最小值,
    此时如图2所示,
    在等腰直角三角形中,,








    设,



    ,,


    即取得最小值为,
    故答案为:.

    图1                                                                              图2
    【点睛】本题考查了等腰直角三角的性质,勾股定理,两点之间线段最短,转化线段是解题的关键.
    37.(2022·广西)如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么∠BAC的大小为______

    【答案】135°##135度
    【分析】根据三角板及其摆放位置可得,求解即可.
    【详解】,

    故答案为:135°.
    【点睛】本题考查了求一个角的补角,即两个角的和为180度时,这两个角互为补角,熟练掌握知识点是解题的关键.
    38.(2022·广西桂林)如图,点C是线段AB的中点,若AC=2cm,则AB=_____cm.

    【答案】4
    【分析】根据中点的定义可得AB=2AC=4cm.
    【详解】解:根据中点的定义可得:AB=2AC=2×2=4cm,
    故答案为:4.
    【点睛】本题主要考查中点的定义,熟知中点的定义是解题关键.
    39.(2022·贵州遵义)数学小组研究如下问题:遵义市某地的纬度约为北纬28°,求北纬28纬线的长度.
    小组成员查阅相关资料,得到如下信息:
    信息一:如图1,在地球仪上,与赤道平行的圆圈叫做纬线;
    信息二:如图2,赤道半径约为6400千米,弦,以为直径的圆的周长就是北纬28°纬线的长度;(参考数据:,,,)
    根据以上信息,北纬28°纬线的长度约为__________千米.

    【答案】33792
    【分析】根据平行线的性质可知,在中,利用锐角三角函数求出,即为以为直径的圆的半径,求出周长即可.
    【详解】解:如图,过点O作,垂足为D,


    根据题意,
    ∵,
    ∴,
    ∵在中, ,
    ∴,
    ∵,
    ∴由垂径定理可知:,
    ∴以为直径的圆的周长为,
    故答案为:33792.
    【点睛】本题考查解直角三角形,平行线的性质,解题的关键是熟练三角函数的含义与解直角三角形的方法.
    三.解答题
    40.(2022·广东)如图,已知,点P在上,,,垂足分别为D,E.求证:.

    【答案】见解析
    【分析】根据角平分线的性质得,再用HL证明.
    【详解】证明:∵,
    ∴为的角平分线,
    又∵点P在上,,,
    ∴,,
    又∵(公共边),
    ∴.
    【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键.
    41.(2022·广西)校园内有一块四边形的草坪造型,课外活动小组实地测量,并记录数据,根据造型画如图的四边形ABCD,其中 AB=CD=2米,AD=BC=3米,∠B=

    (1)求证:△ABC≌△CDA ;(2)求草坪造型的面积.
    【答案】(1)见解析
    (2)草坪造型的面积为
    【分析】(1)根据“SSS”直接证明三角形全等即可;
    (2)过点A作AE⊥BC于点E,利用含30°的直角三角形的性质求出的长度,继而求出的面积,再由全等三角形面积相等得出,即可求出草坪造型的面积.
    (1)在和中,



    (2)
    过点A作AE⊥BC于点E,







    草坪造型的面积,
    所以,草坪造型的面积为.
    【点睛】本题考查了全等三角形的判定和性质,含30°的直角三角形的性质,熟练掌握知识点是解题的关键.
    42.(2022·贵州铜仁)如图,点C在上,.求证:.

    【答案】见解析
    【分析】直接根据一线三垂直模型利用AAS证明即可.
    【详解】解:∵AB⊥BD,ED⊥BD,AC⊥CE,
    ∴∠B=∠D=∠ACE=90°,
    ∴∠BAC+∠BCA=90°=∠BCA+∠DCE,
    ∴∠BAC=∠DCE,
    在△ABC和△CDE中,

    ∴△ABC≌△CDE(AAS).
    【点睛】本题主要考查了全等三角形的判定,熟知一线三垂直模型是解题的关键.
    43.(2022·四川宜宾)已知:如图,点A、D、C、F在同一直线上,,,.
    求证:.

    【答案】见解析
    【分析】根据,可得,根据证明,进而可得,根据线段的和差关系即可求解.
    【详解】证明:∵,
    ∴,
    在与中,

    ∴,
    ∴,
    ∴,
    ∴.
    【点睛】本题考查了平行线的性质,全等三角形的判定与性质,掌握全等三角形的性质与判定是解题的关键.
    44.(2022·北京)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.
    三角形内角和定理:三角形三个内角和等于180°,
    已知:如图,,
    求证:

    方法一
    证明:如图,过点A作

    方法二
    证明:如图,过点C作
    【答案】答案见解析
    【分析】选择方法一,过点作,依据平行线的性质,即可得到,,再根据平角的定义,即可得到三角形的内角和为.
    【详解】证明:过点作,
    则,. 两直线平行,内错角相等)
    点,,在同一条直线上,
    .(平角的定义)

    即三角形的内角和为.
    【点睛】本题主要考查了平行线的性质以及三角形内角和定理的运用,熟练掌握平行线的性质是解题的关键.
    45.(2022·湖南长沙)如图,AC平分,垂足分别为B,D.

    (1)求证:;
    (2)若,求四边形ABCD的面积.
    【答案】(1)见解析
    (2)12
    【分析】(1)由角平分线的定义和垂直的定义求出,结合已知条件,利用“AAS”即可求证;
    (2)由全等三角形的性质得,根据三角形的面积公式求出,再根据四边形ABCD的面积求解即可.
    (1)
    AC平分,



    (2)
    ,,



    四边形ABCD的面积.
    【点睛】本题考查全等三角形的判定和性质,角平分线的定义,熟练掌握它们是解题的关键.
    46.(2022·湖南湘潭)在中,,,直线经过点,过点、分别作的垂线,垂足分别为点、.


    (1)特例体验:如图①,若直线,,分别求出线段、和的长;
    (2)规律探究:①如图②,若直线从图①状态开始绕点旋转,请探究线段、和的数量关系并说明理由;②如图③,若直线从图①状态开始绕点A顺时针旋转,与线段相交于点,请再探线段、和的数量关系并说明理由;
    (3)尝试应用:在图③中,延长线段交线段于点,若,,求.
    【答案】(1)BD=1;CE=1;DE=2
    (2)DE=CE+BD;理由见解析;②BD=CE+DE;理由见解析 (3)
    【分析】(1)先根据得出,根据,得出,,再根据,求出,,
    即可得出,最后根据三角函数得出,,即可求出;
    (2)①DE=CE+BD;根据题意,利用“AAS”证明,得出AD=CE,BD=AE,即可得出结论;
    ②BD=CE+DE;根据题意,利用“AAS”证明,得出AD=CE,BD=AE,即可得出结论;
    (3)在Rt△AEC中,根据勾股定理求出,根据,得出,代入数据求出AF,根据AC=5,算出CF,即可求出三角形的面积.
    (1)解:∵,,∴,
    ∵,∴,,
    ∵BD⊥AE,CE⊥DE,∴,
    ∴,,
    ∴,
    ∴,

    ∴.
    (2)DE=CE+BD;理由如下:
    ∵BD⊥AE,CE⊥DE,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵AB=AC,
    ∴,
    ∴AD=CE,BD=AE,
    ∴DE=AD+AE=CE+BD,
    即DE=CE+BD;
    ②BD=CE+DE,理由如下:
    ∵BD⊥AE,CE⊥DE,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵AB=AC,
    ∴,
    ∴AD=CE,BD=AE,
    ∴BD=AE=AD+DE=CE+DE,
    即BD=CE+DE.
    (3)
    根据解析(2)可知,AD=CE=3,
    ∴,
    在Rt△AEC中,根据勾股定理可得:,
    ∵BD⊥AE,CE⊥AE,
    ∴,
    ∴,
    即,
    解得:,
    ∴,
    ∵AB=AC=5,
    ∴.
    【点睛】本题主要考查了三角形全等的判定和性质,等腰三角形的判定和性质,勾股定理,平行线的性质,解直角三角形,根据题意证明,是解题的关键.
    47.(2022·江苏常州)在四边形中,是边上的一点.若,则点叫做该四边形的“等形点”.(1)正方形_______“等形点”(填“存在”或“不存在”);
    (2)如图,在四边形中,边上的点是四边形的“等形点”.已知,,,连接,求的长;
    (3)在四边形中,EH//FG.若边上的点是四边形的“等形点”,求的值.

    【答案】(1)不存在,理由见详解(2)(3)1
    【分析】(1)根据“等形点”的概念,采用反证法即可判断;
    (2)过A点作AM⊥BC于点M,根据“等形点”的性质可得AB=CD=,OA=OC=5,OB=7=OD,设MO=a,则BM=BO-MO=7-a,在Rt△ABM和Rt△AOM中,利用勾股定理即可求出AM,则在Rt△AMC中利用勾股定理即可求出AC;(3)根据“等形点”的性质可得OF=OH,OE=OG,∠EOF=∠GOH,再根据,可得∠EOF=∠OEH,∠GOH=∠EHO,即有∠OEH=∠OHE,进而有OE=OH,可得OF=OG,则问题得解.
    (1)不存在,理由如下:假设正方形ABCD存在“等形点”点O,即存在△OAB≌△OCD,
    ∵在正方形ABCD中,点O在边BC上,∴∠ABO=90°,
    ∵△OAB≌△OCD,∴∠ABO=∠CDO=90°,∴CD⊥DO,
    ∵CD⊥BC,∴,
    ∵O点在BC上,∴DO与BC交于点O,∴假设不成立,
    故正方形不存在“等形点”;
    (2)如图,过A点作AM⊥BC于点M,如图,

    ∵O点是四边形ABCD的“等形点”,
    ∴△OAB≌△OCD,
    ∴AB=CD,OA=OC,OB=OD,∠AOB=∠COD,
    ∵,OA=5,BC=12,
    ∴AB=CD=,OA=OC=5,
    ∴OB=BC-OC=12-5=7=OD,
    ∵AM⊥BC,
    ∴∠AMO=90°=∠AMB,
    ∴设MO=a,则BM=BO-MO=7-a,
    ∴在Rt△ABM和Rt△AOM中,,
    ∴,即,
    解得:,即,
    ∴MC=MO+OC=,
    ∴在Rt△AMC中,,
    即AC的长为;
    (3)如图,

    ∵O点是四边形EFGH的“等形点”,
    ∴△OEF≌△OGH,
    ∴OF=OH,OE=OG,∠EOF=∠GOH,
    ∵,
    ∴∠EOF=∠OEH,∠GOH=∠EHO,
    ∴根据∠EOF=∠GOH有∠OEH=∠OHE,
    ∴OE=OH,
    ∵OF=OH,OE=OG,
    ∴OF=OG,
    ∴.
    【点睛】本题考查了全等三角形的性质、勾股定理、正方形的性质、平行的性质等知识,充分利用全等三角形的性质是解答本题的关键.
    48.(2022·北京)在中,,D为内一点,连接,,延长到点,使得

    (1)如图1,延长到点,使得,连接,,若,求证:;
    (2)连接,交的延长线于点,连接,依题意补全图2,若,用等式表示线段与的数量关系,并证明.
    【答案】(1)见解析
    (2);证明见解析
    【分析】(1)先利用已知条件证明,得出,推出,再由即可证明;
    (2)延长BC到点M,使CM=CB,连接EM,AM,先证,推出,通过等量代换得到,利用平行线的性质得出,利用直角三角形斜边中线等于斜边一半即可得到.
    (1)
    证明:在和中,

    ∴ ,
    ∴ ,
    ∴ ,
    ∵,
    ∴.
    (2)
    解:补全后的图形如图所示,,证明如下:

    延长BC到点M,使CM=CB,连接EM,AM,
    ∵,CM=CB,
    ∴ 垂直平分BM,
    ∴,
    在和中,

    ∴ ,
    ∴ ,,
    ∵,
    ∴ ,
    ∴ ,
    ∵,
    ∴ ,
    ∴ ,即,
    ∵,
    ∴ ,
    ∴ .
    【点睛】本题考查全等三角形的判定与性质,垂直平分线的性质,平行线的判定与性质,勾股定理的逆用,直角三角形斜边中线的性质等,第二问有一定难度,正确作辅助线,证明是解题的关键.
    49.(2022·湖北武汉)如图,在四边形中,,.

    (1)求的度数;(2)平分交于点,.求证:.
    【答案】(1)
    (2)详见解析
    【分析】(1)根据两直线平行,同旁内角互补,即可求解;
    (2)根据平分,可得.再由,可得.即可求证.
    (1)解:∵,
    ∴,
    ∵,
    ∴.
    (2)证明:∵平分,
    ∴.
    ∵,
    ∴.
    ∵,
    ∴.
    ∴.
    【点睛】本题主要考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键
    50.(2022·福建)如图,点B,F,C,E在同一条直线上,BF=EC,AB=DE,∠B=∠E.求证:∠A=∠D.

    【答案】见解析
    【分析】根据全等三角形的判定和性质即可得到结论.
    【详解】证明:∵BF=EC,
    ∴,即BC=EF.
    在△ABC和△DEF中,

    ∴,
    ∴∠A=∠D.
    【点睛】本题考查了全等三角形的判定与性质、证明三角形全等是解题的关键.
    51.(2022·四川广安)如图,点D是△ABC外一点,连接BD、 AD,AD与BC交于点O.下列三个等式:①BC=AD;②∠ABC=∠BAD;③AC= BD.请从这三个等式中,任选两个作为已知条件,剩下的一个作为结论,组成一个真命题,将你选择的等式或等式的序号填在下面对应的横线上,然后对该真命题进行证明.
    已知: ,
    求证:

    【答案】BC=AD,∠ABC=∠BAD;AC=BD;证明见详解
    【分析】构造SAS,利用全等三角形的判定与性质即可求解.
    【详解】已知:BC=AD,∠ABC=∠BAD,
    求证:AC=BD.
    证明:在△ABC和△BAD中,
    ∵,
    ∴,
    ∴,即命题得证.
    【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的判定是解答本题的关键.

    相关试卷

    2022年中考数学分类汇编22讲专题22 与二次函数相关的压轴题:

    这是一份2022年中考数学分类汇编22讲专题22 与二次函数相关的压轴题,文件包含专题22与二次函数相关的压轴题-老师版docx、专题22与二次函数相关的压轴题-学生版docx等2份试卷配套教学资源,其中试卷共132页, 欢迎下载使用。

    2022年中考数学分类汇编22讲专题19 应用题:

    这是一份2022年中考数学分类汇编22讲专题19 应用题,文件包含专题19应用题-函数不等式方程-老师版docx、专题19应用题-函数不等式方程-学生版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。

    2022年中考数学分类汇编22讲专题18 统计:

    这是一份2022年中考数学分类汇编22讲专题18 统计

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2022年中考数学分类汇编22讲专题10 平行线与三角形
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map