新高考数学二轮复习思想方法第2讲数形结合思想课件
展开数形结合思想,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.数形结合思想的应用包括以下两个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质;(2)“以数定形”,把直观图形数量化,使形更加精确.
利用数形结合求解函数与方程、不等式问题
利用函数图象可直观研究函数的性质,求解与函数有关的方程、不等式问题.
作出函数f(x)的图象如图所示,
因为方程f(x)=a恰有四个不同的实数解,即y=f(x)与y=a恰有四个交点,所以1≤a<2,不妨令x1
思路分析 作出函数y=|f(x)|的图象和函数y=ax的图象→结合图象可知直线y=ax介于l与x轴之间→利用导数求出直线l的斜率,数形结合即可求解
由题意可作出函数y=|f(x)|的图象和函数y=ax的图象.由图象可知,函数y=ax的图象是过原点的直线,当直线介于l与x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分的解析式为y=x2-2x,求其导数可得y′=2x-2,当x=0时,y′=-2,故直线l的斜率为-2,故只需直线y=ax的斜率a∈[-2,0].
方程的根可通过构造函数,转化为两函数的交点横坐标;不等式f(x)
向量、复数、圆锥曲线等数学概念具有明显的几何意义,可利用图形观察求解有关问题;灵活应用一些几何结构的代数形式,如斜率、距离公式等.
(2022·朔州模拟)若|a|=|b|=|c|=2,且a·b=0,(a-c)·(b-c)≤0,则|a+b-c|的取值范围是
∵(a-c)·(b-c)≤0,∴点C在劣弧AB上运动,
应用几何意义法解决问题需要熟悉常见的几何结构的代数形式,主要有:①比值——可考虑直线的斜率;②二元一次式—可考虑直线的截距;③根式分式——可考虑点到直线的距离;④根式——可考虑两点间的距离.
几何动态问题中的数形结合
对一些几何动态中的代数求解问题,可以结合各个变量的形成过程,找出其中的相互关系求解.
思路分析 利用相切、勾股定理,找|PM|与|PC1|,|PN|与|PC2|的关系→利用双曲线定义:|PC1|-|PC2|=2a→利用|PC1|+|PC2|≥|C1C2|即可求解.
由双曲线方程知其焦点坐标为(±7,0),由圆的方程知,圆C1圆心为C1(-7,0),半径r1=2;圆C2圆心为C2(7,0),半径r2=1.∵PM,PN分别为两圆切线,∴|PM|2=|PC1|2-r=|PC1|2-4,
∴|PM|2-|PN|2=|PC1|2-|PC2|2-3=(|PC1|+|PC2|)(|PC1|-|PC2|)-3,∵P为双曲线右支上的点,且双曲线焦点为C1,C2,
∴|PC1|-|PC2|=2,又|PC1|+|PC2|≥|C1C2|=14(当P为双曲线右顶点时取等号),∴|PM|2-|PN|2=(|PC1|+|PC2|)(|PC1|-|PC2|)-3≥14×2-3=25,即|PM|2-|PN|2的最小值为25.
思想方法 第2讲 数形结合思想 2024年高考数学大二轮复习课件(含讲义): 这是一份思想方法 第2讲 数形结合思想 2024年高考数学大二轮复习课件(含讲义),文件包含思想方法第2讲数形结合思想pptx、思想方法第2讲数形结合思想docx等2份课件配套教学资源,其中PPT共23页, 欢迎下载使用。
新教材适用2024版高考数学二轮总复习第2篇核心素养谋局思想方法导航第2讲数形结合思想课件: 这是一份新教材适用2024版高考数学二轮总复习第2篇核心素养谋局思想方法导航第2讲数形结合思想课件,共60页。PPT课件主要包含了第2讲数形结合思想,思想方法速览,思想方法解读,思想方法应用等内容,欢迎下载使用。
新高考版高考数学二轮复习(新高考版) 第2部分 思想方法 第2讲 数形结合思想课件PPT: 这是一份新高考版高考数学二轮复习(新高考版) 第2部分 思想方法 第2讲 数形结合思想课件PPT,共26页。PPT课件主要包含了思想方法,第2讲数形结合思想等内容,欢迎下载使用。