终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题15 概率统计与计数原理选择填空题-大数据之十年高考真题(2013-2022)与优质模拟题汇编(新高考卷与全国理科)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题15概率统计与计数原理选择填空题(原卷版).docx
    • 解析
      专题15概率统计与计数原理选择填空题(解析版).docx
    专题15概率统计与计数原理选择填空题(原卷版)第1页
    专题15概率统计与计数原理选择填空题(原卷版)第2页
    专题15概率统计与计数原理选择填空题(原卷版)第3页
    专题15概率统计与计数原理选择填空题(解析版)第1页
    专题15概率统计与计数原理选择填空题(解析版)第2页
    专题15概率统计与计数原理选择填空题(解析版)第3页
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题15 概率统计与计数原理选择填空题-大数据之十年高考真题(2013-2022)与优质模拟题汇编(新高考卷与全国理科)

    展开

    大数据之十年高考真题(2013-2022)与优质模拟题(新高考卷与新课标理科卷)
    专题15概率统计与计数原理选择填空题
    真题汇总命题趋势

    1.【2022年全国甲卷理科02】某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:

    则(       )
    A.讲座前问卷答题的正确率的中位数小于70%
    B.讲座后问卷答题的正确率的平均数大于85%
    C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差
    D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差
    2.【2022年全国乙卷理科10】某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则(       )
    A.p与该棋手和甲、乙、丙的比赛次序无关 B.该棋手在第二盘与甲比赛,p最大
    C.该棋手在第二盘与乙比赛,p最大 D.该棋手在第二盘与丙比赛,p最大
    3.【2022年新高考1卷05】从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为(       )
    A.16 B.13 C.12 D.23
    4.【2022年新高考2卷05】有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有(       )
    A.12种 B.24种 C.36种 D.48种
    5.【2021年全国甲卷理科2】为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:


    根据此频率分布直方图,下面结论中不正确的是( )
    A.该地农户家庭年收入低于4.5万元的农户比率估计为6%
    B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%
    C.估计该地农户家庭年收入的平均值不超过6.5万元
    D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
    6.【2021年全国甲卷理科10】将4个1和2个0随机排成一行,则2个0不相邻的概率为( )
    A.13 B.25 C.23 D.45
    7.【2021年新高考1卷8】有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )
    A.甲与丙相互独立 B.甲与丁相互独立
    C.乙与丙相互独立 D.丙与丁相互独立
    8.【2021年全国乙卷理科6】将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )
    A.60种 B.120种 C.240种 D.480种
    9.【2021年全国乙卷理科8】在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为( )
    A.79 B.2332 C.932 D.29
    10.【2021年新高考2卷6】某物理量的测量结果服从正态分布N(10,σ2),下列结论中不正确的是( )
    A.σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大
    B.σ越小,该物理量在一次测量中大于10的概率为0.5
    C.σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等
    D.σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等
    11.【2020年全国1卷理科05】某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(xi,yi)(i=1,2,⋯,20)得到下面的散点图:

    由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是( )
    A.y=a+bx B.y=a+bx2
    C.y=a+bex D.y=a+blnx
    12.【2020年全国1卷理科08】(x+y2x)(x+y)5的展开式中x3y3的系数为( )
    A.5 B.10
    C.15 D.20
    13.【2020年全国2卷理科03】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )
    A.10名 B.18名 C.24名 D.32名
    14.【2020年全国3卷理科03】在一组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且i=14pi=1,则下面四种情形中,对应样本的标准差最大的一组是( )
    A.p1=p4=0.1,p2=p3=0.4 B.p1=p4=0.4,p2=p3=0.1
    C.p1=p4=0.2,p2=p3=0.3 D.p1=p4=0.3,p2=p3=0.2
    15.【2020年山东卷03】6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )
    A.120种 B.90种
    C.60种 D.30种
    16.【2020年山东卷05】某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )
    A.62% B.56%
    C.46% D.42%
    17.【2020年海南卷03】6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )
    A.120种 B.90种
    C.60种 D.30种
    18.【2020年海南卷05】某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )
    A.62% B.56%
    C.46% D.42%
    19.【2019年新课标3理科03】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为(  )
    A.0.5 B.0.6 C.0.7 D.0.8
    20.【2019年新课标3理科04】(1+2x2)(1+x)4的展开式中x3的系数为(  )
    A.12 B.16 C.20 D.24
    21.【2019年全国新课标2理科05】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是(  )
    A.中位数 B.平均数 C.方差 D.极差
    22.【2019年新课标1理科06】我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是(  )

    A.516 B.1132 C.2132 D.1116
    23.【2018年新课标1理科03】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:

    则下面结论中不正确的是(    )
    A.新农村建设后,种植收入减少
    B.新农村建设后,其他收入增加了一倍以上
    C.新农村建设后,养殖收入增加了一倍
    D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
    24.【2018年新课标1理科10】如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则(    )

    A.p1=p2 B.p1=p3 C.p2=p3 D.p1=p2+p3
    25.【2018年新课标2理科08】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是(    )
    A.112 B.114 C.115 D.118
    26.【2018年新课标3理科05】(x2+2x)5的展开式中x4的系数为(    )
    A.10 B.20 C.40 D.80
    27.【2018年新课标3理科08】某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=(    )
    A.0.7 B.0.6 C.0.4 D.0.3
    28.【2017年新课标1理科02】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是(    )

    A.14 B.π8 C.12 D.π4
    29.【2017年新课标1理科06】(1+1x2)(1+x)6展开式中x2的系数为(    )
    A.15 B.20 C.30 D.35
    30.【2017年新课标2理科06】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有(    )
    A.12种 B.18种 C.24种 D.36种
    31.【2017年新课标3理科03】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

    根据该折线图,下列结论错误的是(    )
    A.月接待游客量逐月增加
    B.年接待游客量逐年增加
    C.各年的月接待游客量高峰期大致在7,8月
    D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
    32.【2017年新课标3理科04】(x+y)(2x﹣y)5的展开式中的x3y3系数为 (    )
    A.﹣80 B.﹣40 C.40 D.80
    33.【2016年新课标1理科04】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(  )
    A.13 B.12 C.23 D.34
    34.【2016年新课标2理科05】如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(    )

    A.24 B.18 C.12 D.9
    35.【2016年新课标2理科10】从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn构成n个数对(x1,y1),(x2,y2)…(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为(    )
    A.4nm B.2nm C.4mn D.2mn
    36.【2016年新课标3理科04】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是(    )

    A.各月的平均最低气温都在0℃以上
    B.七月的平均温差比一月的平均温差大
    C.三月和十一月的平均最高气温基本相同
    D.平均最高气温高于20℃的月份有5个
    37.【2015年新课标1理科04】投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(    )
    A.0.648 B.0.432 C.0.36 D.0.312
    38.【2015年新课标1理科10】(x2+x+y)5的展开式中,x5y2的系数为(    )
    A.10 B.20 C.30 D.60
    39.【2015年新课标2理科03】根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是(    )

    A.逐年比较,2008年减少二氧化硫排放量的效果最显著
    B.2007年我国治理二氧化硫排放显现成效
    C.2006年以来我国二氧化硫年排放量呈减少趋势
    D.2006年以来我国二氧化硫年排放量与年份正相关
    40.【2014年新课标1理科05】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为(    )
    A.18 B.38 C.58 D.78
    41.【2014年新课标2理科05】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是(    )
    A.0.8 B.0.75 C.0.6 D.0.45
    42.【2013年新课标1理科03】为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是(    )
    A.简单的随机抽样 B.按性别分层抽样
    C.按学段分层抽样 D.系统抽样
    43.【2013年新课标1理科09】设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=(    )
    A.5 B.6 C.7 D.8
    44.【2013年新课标2理科05】已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=(    )
    A.﹣4 B.﹣3 C.﹣2 D.﹣1
    45.【2021年新高考1卷9】有一组样本数据x1,x2,…,xn,由这组数据得到新样本数据y1,y2,…,yn,其中yi=xi+c(i=1,2,⋅⋅⋅,n),c为非零常数,则( )
    A.两组样本数据的样本平均数相同
    B.两组样本数据的样本中位数相同
    C.两组样本数据的样本标准差相同
    D.两组样数据的样本极差相同
    46.【2021年新高考2卷9】下列统计量中,能度量样本x1,x2,⋯,xn的离散程度的是( )
    A.样本x1,x2,⋯,xn的标准差 B.样本x1,x2,⋯,xn的中位数
    C.样本x1,x2,⋯,xn的极差 D.样本x1,x2,⋯,xn的平均数
    47.【2020年山东卷12】信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为1,2,⋯,n,且P(X=i)=pi>0(i=1,2,⋯,n),i=1npi=1,定义X的信息熵H(X)=−i=1npilog2pi.( )
    A.若n=1,则H(X)=0
    B.若n=2,则H(X)随着p1的增大而增大
    C.若pi=1n(i=1,2,⋯,n),则H(X)随着n的增大而增大
    D.若n=2m,随机变量Y所有可能的取值为1,2,⋯,m,且P(Y=j)=pj+p2m+1−j(j=1,2,⋯,m),则H(X)≤H(Y)
    48.【2020年海南卷12】信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为1,2,⋯,n,且P(X=i)=pi>0(i=1,2,⋯,n),i=1npi=1,定义X的信息熵H(X)=−i=1npilog2pi.( )
    A.若n=1,则H(X)=0
    B.若n=2,则H(X)随着p1的增大而增大
    C.若pi=1n(i=1,2,⋯,n),则H(X)随着n的增大而增大
    D.若n=2m,随机变量Y所有可能的取值为1,2,⋯,m,且P(Y=j)=pj+p2m+1−j(j=1,2,⋯,m),则H(X)≤H(Y)
    49.【2022年全国甲卷理科15】从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.
    50.【2022年全国乙卷理科13】从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.
    51.【2022年新高考1卷13】1−yx(x+y)8的展开式中x2y6的系数为________________(用数字作答).
    52.【2022年新高考2卷13】已知随机变量X服从正态分布N2,σ2,且P(22.5)=____________.
    53.【2020年全国2卷理科14】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.
    54.【2020年全国3卷理科14】(x2+2x)6的展开式中常数项是__________(用数字作答).
    55.【2019年全国新课标2理科13】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为  .
    56.【2019年新课标1理科15】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是  .
    57.【2018年新课标1理科15】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有    种.(用数字填写答案)
    58.【2017年新课标2理科13】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次.X表示抽到的二等品件数,则DX=    .
    59.【2016年新课标1理科14】(2x+x)5的展开式中,x3的系数是 10 .(用数字填写答案)
    60.【2015年新课标2理科15】(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=    .
    61.【2014年新课标1理科13】(x﹣y)(x+y)8的展开式中x2y7的系数为    .(用数字填写答案)
    62.【2014年新课标2理科13】(x+a)10的展开式中,x7的系数为15,则a=    .
    63.【2013年新课标2理科14】从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=    .
    模拟好题

    1.下列说法正确的是(       )
    A.随机变量X服从两点分布,若PX=0=13,则EX=13
    B.随机变量X~Bn,p,若EX=30,DX=10,则p=43
    C.随机变量X服从正态分布N4,1,且PX≥5=0.1587,则P3

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map