


重庆市万州区达标名校2021-2022学年中考数学猜题卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是( )
A. B. C. D.
2.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是( )
A.13;13 B.14;10 C.14;13 D.13;14
3.如图,在6×4的正方形网格中,△ABC的顶点均为格点,则sin∠ACB=( )
A. B.2 C. D.
4.方程2x2﹣x﹣3=0的两个根为( )
A.x1=,x2=﹣1 B.x1=﹣,x2=1 C.x1=,x2=﹣3 D.x1=﹣,x2=3
5.人的头发直径约为0.00007m,这个数据用科学记数法表示( )
A.0.7×10﹣4 B.7×10﹣5 C.0.7×104 D.7×105
6.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( )
A.0.555×104 B.5.55×103 C.5.55×104 D.55.5×103
7.如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是( )
A.x>﹣4 B.x>0 C.x<﹣4 D.x<0
8.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )
A.2、40 B.42、38 C.40、42 D.42、40
9.已知关于x的一元二次方程有实数根,则m的取值范围是( )
A. B. C. D.
10.下列4个点,不在反比例函数图象上的是( )
A.( 2,-3) B.(-3,2) C.(3,-2) D.( 3,2)
11. “a是实数,|a|≥0”这一事件是( )
A.必然事件 B.不确定事件 C.不可能事件 D.随机事件
12.计算﹣1﹣(﹣4)的结果为( )
A.﹣3 B.3 C.﹣5 D.5
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.学校乒乓球社团有4名男队员和3名女队员,要从这7名队员中随机抽取一男一女组成一队混合双打组合,可组成不同的组合共有_____对.
14.如图,直线a∥b,∠P=75°,∠2=30°,则∠1=_____.
15.某广场要做一个由若干盆花组成的形如正六边形的花坛,每条边(包括两个顶点)有n(n>1)盆花,设这个花坛边上的花盆的总数为S,请观察图中的规律:
按上规律推断,S与n的关系是________________________________.
16.如图,在平面直角坐标系中,已知C(1,),△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则点F的坐标为_____.
17.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回 元(用含a的代数式表示).
18.方程的解是 .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,二次函数y=﹣+mx+4﹣m的图象与x轴交于A、B两点(A在B的左侧),与),轴交于点C.抛物线的对称轴是直线x=﹣2,D是抛物线的顶点.
(1)求二次函数的表达式;
(2)当﹣<x<1时,请求出y的取值范围;
(3)连接AD,线段OC上有一点E,点E关于直线x=﹣2的对称点E'恰好在线段AD上,求点E的坐标.
20.(6分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为W元.
(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?
(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
21.(6分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.
(1)求A、B两种品牌的化妆品每套进价分别为多少元?
(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?
22.(8分)某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:
(1)求购进的第一批文化衫的件数;
(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?
23.(8分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
根据统计图的信息解决下列问题:
本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是 ;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
24.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
25.(10分)为了了解某校学生对以下四个电视节目:A《最强大脑》,B《中国诗词大会》,C《朗读者》,D《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.
请你根据图中所提供的信息,完成下列问题:
本次调查的学生人数为________;在扇形统计图中,A部分所占圆心角的度数为________;请将条形统计图补充完整:若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名?
26.(12分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分 组
频数
频率
第一组(0≤x<15)
3
0.15
第二组(15≤x<30)
6
a
第三组(30≤x<45)
7
0.35
第四组(45≤x<60)
b
0.20
(1)频数分布表中a=_____,b=_____,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?
27.(12分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B,AB=.求反比例函数的解析式;若P(,)、Q(,)是该反比例函数图象上的两点,且时,,指出点P、Q各位于哪个象限?并简要说明理由.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.
【详解】
解:主视图,如图所示:
.
故选B.
【点睛】
本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.
2、C
【解析】
根据统计图,利用众数与中位数的概念即可得出答案.
【详解】
从统计图中可以得出这一周的气温分别是:12,15,14,10,13,14,11
所以众数为14;
将气温按从低到高的顺序排列为:10,11,12,13,14,14,15
所以中位数为13
故选:C.
【点睛】
本题主要考查中位数和众数,掌握中位数和众数的求法是解题的关键.
3、C
【解析】
如图,由图可知BD=2、CD=1、BC=,根据sin∠BCA=可得答案.
【详解】
解:如图所示,
∵BD=2、CD=1,
∴BC===,
则sin∠BCA===,
故选C.
【点睛】
本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.
4、A
【解析】
利用因式分解法解方程即可.
【详解】
解:(2x-3)(x+1)=0,
2x-3=0或x+1=0,
所以x1=,x2=-1.
故选A.
【点睛】
本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
5、B
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.00007m,这个数据用科学记数法表示7×10﹣1.
故选:B.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
6、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:5550=5.55×1.
故选B.
【点睛】
本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
7、A
【解析】
试题分析:充分利用图形,直接从图上得出x的取值范围.
由图可知,当y<1时,x<-4,故选C.
考点:本题考查的是一次函数的图象
点评:解答本题的关键是掌握在x轴下方的部分y<1,在x轴上方的部分y>1.
8、D
【解析】【分析】根据众数和中位数的定义分别进行求解即可得.
【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,
将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,
故选D.
【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.
9、C
【解析】
解:∵关于x的一元二次方程有实数根,
∴△==,
解得m≥1,
故选C.
【点睛】
本题考查一元二次方程根的判别式.
10、D
【解析】
分析:根据得k=xy=-6,所以只要点的横坐标与纵坐标的积等于-6,就在函数图象上.
解答:解:原式可化为:xy=-6,
A、2×(-3)=-6,符合条件;
B、(-3)×2=-6,符合条件;
C、3×(-2)=-6,符合条件;
D、3×2=6,不符合条件.
故选D.
11、A
【解析】
根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,由a是实数,得|a|≥0恒成立,因此,这一事件是必然事件.故选A.
12、B
【解析】
原式利用减法法则变形,计算即可求出值.
【详解】
,
故选:B.
【点睛】
本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
利用树状图展示所有1种等可能的结果数.
【详解】
解:画树状图为:
共有1种等可能的结果数.
故答案为1.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
14、45°
【解析】
过P作PM∥直线a,根据平行线的性质,由直线a∥b,可得直线a∥b∥PM,然后根据平行线的性质,由∠P=75°,∠2=30°,可得∠1=∠P-∠2=45°.
故答案为45°.
点睛:本题考查了平行线的性质的应用,能正确根据平行线的性质进行推理是解此题的关键,注意:两直线平行,内错角相等.
15、S=1n-1
【解析】
观察可得,n=2时,S=1;
n=3时,S=1+(3-2)×1=12;
n=4时,S=1+(4-2)×1=18;
…;
所以,S与n的关系是:S=1+(n-2)×1=1n-1.
故答案为S=1n-1.
【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
16、(,)
【解析】
根据相似三角形的性质求出相似比,根据位似变换的性质计算即可.
【详解】
解:∵△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,
则△DEF的边长是△ABC边长的倍,
∴点F的坐标为(1×,×),即(,),
故答案为:(,).
【点睛】
本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.
17、(50-3a).
【解析】
试题解析:∵购买这种售价是每千克a元的水果3千克需3a元,
∴根据题意,应找回(50-3a)元.
考点:列代数式.
18、x=1.
【解析】
根据解分式方程的步骤解答即可.
【详解】
去分母得:2x=3x﹣1,
解得:x=1,
经检验x=1是分式方程的解,
故答案为x=1.
【点睛】
本题主要考查了解分式方程的步骤,牢牢掌握其步骤就解答此类问题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)y=﹣x1﹣1x+6;(1)<y<;(3)(0,4).
【解析】
(1)利用对称轴公式求出m的值,即可确定出解析式;
(1)根据x的范围,利用二次函数的增减性确定出y的范围即可;
(3)根据题意确定出D与A坐标,进而求出直线AD解析式,设出E坐标,利用对称性确定出E坐标即可.
【详解】
(1)∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,即m=﹣1,则二次函数解析式为y=﹣x1﹣1x+6;
(1)当x=﹣时,y=;当x=1时,y=.
∵﹣<x<1位于对称轴右侧,y随x的增大而减小,∴<y<;
(3)当x=﹣1时,y=8,∴顶点D的坐标是(﹣1,8),令y=0,得到:﹣x1﹣1x+6=0,解得:x=﹣6或x=1.
∵点A在点B的左侧,∴点A坐标为(﹣6,0).
设直线AD解析式为y=kx+b,可得:,解得:,即直线AD解析式为y=1x+11.
设E(0,n),则有E′(﹣4,n),代入y=1x+11中得:n=4,则点E坐标为(0,4).
【点睛】
本题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键.
20、(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元.
【解析】
(1)直接利用每件利润×销量=总利润进而得出等式求出答案;
(2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案.
【详解】
(1)根据题意得:(x﹣20)(﹣2x+1)=150,
解得:x1=25,x2=35,
答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;
(2)由题意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,
∵a=﹣2,
∴抛物线开口向下,当x<30时,y随x的增大而增大,
又由于这种农产品的销售价不高于每千克28元
∴当x=28时,W最大=﹣2×(28﹣30)2+200=192(元).
∴销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.
【点睛】
此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键.
21、(1)A、B两种品牌得化妆品每套进价分别为100元,75元;(2)A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元
【解析】
(1)求A、B两种品牌的化妆品每套进价分别为多少元,可设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元.根据两种购买方法,列出方程组解方程;
(2)根据题意列出不等式,求出m的范围,再用代数式表示出利润,即可得出答案.
【详解】
(1)设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元.
得
解得:,
答:A、B两种品牌得化妆品每套进价分别为100元,75元.
(2)设A种品牌得化妆品购进m套,则B种品牌得化妆品购进(50﹣m)套.
根据题意得:100m+75(50﹣m)≤4000,且50﹣m≥0,
解得,5≤m≤10,
利润是30m+20(50﹣m)=1000+10m,
当m取最大10时,利润最大,
最大利润是1000+100=1100,
所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元.
【点睛】
本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
22、(1)50件;(2)120元.
【解析】
(1)设第一批购进文化衫x件,根据数量=总价÷单价结合第二批每件文化衫的进价比第一批每件文化衫的进价多10元,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)根据第二批购进的件数比第一批多40%,可求出第二批的进货数量,设该服装店销售该品牌文化衫每件的售价为y元,根据利润=销售单价×销售数量-进货总价,即可得出关于y的一元一次不等式,解之取其内的最小值即可得出结论.
【详解】
解:(1)设第一批购进文化衫x件,
根据题意得: +10=,
解得:x=50,
经检验,x=50是原方程的解,且符合题意,
答:第一批购进文化衫50件;
(2)第二批购进文化衫(1+40%)×50=70(件),
设该服装店销售该品牌文化衫每件的售价为y元,
根据题意得:(50+70)y﹣4000﹣6300≥4100,
解得:y≥120,
答:该服装店销售该品牌文化衫每件最低售价为120元.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.
23、(1)150人;(2)补图见解析;(3)144°;(4)300盒.
【解析】
(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.
(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.
(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.
【详解】
解:(1)本次调查的学生有30÷20%=150人;
(2)C类别人数为150﹣(30+45+15)=60人,
补全条形图如下:
(3)扇形统计图中C对应的中心角度数是360°×=144°
故答案为144°
(4)600×()=300(人),
答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.
【点睛】
本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.
24、(1)见解析(2)见解析
【解析】
(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.
(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.
【详解】
解:(1)证明:∵AF∥BC,
∴∠AFE=∠DBE.
∵E是AD的中点,AD是BC边上的中线,
∴AE=DE,BD=CD.
在△AFE和△DBE中,
∵∠AFE=∠DBE,∠FEA=∠BED, AE=DE,
∴△AFE≌△DBE(AAS)
∴AF=BD.
∴AF=DC.
(2)四边形ADCF是菱形,证明如下:
∵AF∥BC,AF=DC,
∴四边形ADCF是平行四边形.
∵AC⊥AB,AD是斜边BC的中线,
∴AD=DC.
∴平行四边形ADCF是菱形
25、(1)120;(2) ;(3)答案见解析;(4)1650.
【解析】
(1)依据节目B的数据,即可得到调查的学生人数;
(2)依据A部分的百分比,即可得到A部分所占圆心角的度数;
(3)求得C部分的人数,即可将条形统计图补充完整;
(4)依据喜爱《中国诗词大会》的学生所占的百分比,即可得到该校最喜爱《中国诗词大会》的学生数量.
【详解】
,
故答案为120;
,
故答案为;
:,
如图所示:
,
答:该校最喜爱中国诗词大会的学生有1650名.
【点睛】
本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.
26、0.3 4
【解析】
(1)由统计图易得a与b的值,继而将统计图补充完整;
(2)利用用样本估计总体的知识求解即可求得答案;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.
【详解】
(1)a=1﹣0.15﹣0.35﹣0.20=0.3;
∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);
故答案为0.3,4;
补全统计图得:
(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);
(3)画树状图得:
∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:=.
【点睛】
本题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.
27、(1);(2)P在第二象限,Q在第三象限.
【解析】
试题分析:(1)求出点B坐标即可解决问题;
(2)结论:P在第二象限,Q在第三象限.利用反比例函数的性质即可解决问题;
试题解析:解:(1)由题意B(﹣2,),把B(﹣2,)代入中,得到k=﹣3,∴反比例函数的解析式为.
(2)结论:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.
点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
重庆市新店重点达标名校2022年中考数学猜题卷含解析: 这是一份重庆市新店重点达标名校2022年中考数学猜题卷含解析,共20页。试卷主要包含了﹣2的绝对值是等内容,欢迎下载使用。
新疆乌鲁木齐市达标名校2021-2022学年中考数学猜题卷含解析: 这是一份新疆乌鲁木齐市达标名校2021-2022学年中考数学猜题卷含解析,共17页。试卷主要包含了下列运算结果正确的是等内容,欢迎下载使用。
安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析: 这是一份安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析,共24页。试卷主要包含了答题时请按要求用笔,已知二次函数y=,在一组数据等内容,欢迎下载使用。