


重庆市江北区市级名校2022年中考数学四模试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为( )
A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)
2.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为( )
A.8 B.6 C.12 D.10
3.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是
A.x1=1,x2=-1 B.x1=1,x2=2
C.x1=1,x2=0 D.x1=1,x2=3
4.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是( )
A.k≤2且k≠1 B.k<2且k≠1
C.k=2 D.k=2或1
5.下列分式是最简分式的是( )
A. B. C. D.
6.要使分式有意义,则x的取值应满足( )
A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣2
7.若x=-2 是关于x的一元二次方程x2-ax+a2=0的一个根,则a的值为( )
A.1或4 B.-1或-4 C.-1或4 D.1或-4
8.一次函数满足,且y随x的增大而减小,则此函数的图像一定不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9.下列式子中,与互为有理化因式的是( )
A. B. C. D.
10.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )
A.75° B.60° C.55° D.45°
11. “辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨,数据67500用科学记数法表示为
A.675×102 B.67.5×102 C.6.75×104 D.6.75×105
12.如图,AB是⊙O的直径,AB=8,弦CD垂直平分OB,E是弧AD上的动点,AF⊥CE于点F,点E在弧AD上从A运动到D的过程中,线段CF扫过的面积为( )
A.4π+3 B.4π+ C.π+ D.π+3
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45 m,根据以上观测数据可求观光塔的高CD是______m.
14.如图,四边形OABC中,AB∥OC,边OA在x轴的正半轴上,OC在y轴的正半轴上,点B在第一象限内,点D为AB的中点,CD与OB相交于点E,若△BDE、△OCE的面积分别为1和9,反比例函数y=的图象经过点B,则k=_______.
15..如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是_______.
16.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.
17.如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,联结CP,将△BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP//AB,则AB的长等于________.
18.如图,在Rt△ABC中,AC=4,BC=3,将Rt△ABC以点A为中心,逆时针旋转60°得到△ADE,则线段BE的长度为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)(1)问题发现
如图1,在Rt△ABC中,∠A=90°,=1,点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接 CD.
(1)①求的值;②求∠ACD的度数.
(2)拓展探究
如图 2,在Rt△ABC中,∠A=90°,=k.点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD,请判断∠ACD与∠B 的数量关系以及PB与CD之间的数量关系,并说明理由.
(3)解决问题
如图 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是边BC上一动点(不与点B重合),∠PAD=∠BAC,∠APD=∠B,连接CD.若 PA=5,请直接写出CD的长.
20.(6分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.
21.(6分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:
(I)本次随机抽样调查的学生人数为 ,图①中的m的值为 ;
(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;
(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.
22.(8分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.
(1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;
(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.
23.(8分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.
(1)求证:四边形OBCP是平行四边形;
(2)填空:
①当∠BOP= 时,四边形AOCP是菱形;
②连接BP,当∠ABP= 时,PC是⊙O的切线.
24.(10分)在平面直角坐标系中,函数()的图象经过点(4,1),直线与图象交于点,与轴交于点.求的值;横、纵坐标都是整数的点叫做整点.记图象在点,之间的部分与线段,,围成的区域(不含边界)为.
①当时,直接写出区域内的整点个数;
②若区域内恰有4个整点,结合函数图象,求的取值范围.
25.(10分)如图,已知一次函数y=x+m的图象与x轴交于点A(﹣4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1.
(1)求点B坐标;
(1)求二次函数y=ax1+bx+c的解析式;
(3)设一次函数y=x+m的图象与二次函数y=ax1+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD是以BD为直角边的直角三角形,求点P的坐标.
26.(12分)计算:()-1+()0+-2cos30°.
27.(12分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.
(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;
(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.
(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.
①求∠CAM的度数;
②当FH=,DM=4时,求DH的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
令x=0,y=6,∴B(0,6),
∵等腰△OBC,∴点C在线段OB的垂直平分线上,
∴设C(a,3),则C '(a-5,3),
∴3=3(a-5)+6,解得a=4,
∴C(4,3).
故选B.
点睛:掌握等腰三角形的性质、函数图像的平移.
2、C
【解析】
由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.
【详解】
∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,
∴PA=PB=6,AC=EC,BD=ED,
∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,
即△PCD的周长为12,
故选:C.
【点睛】
本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.
3、B
【解析】
试题分析:∵二次函数(m为常数)的图象与x轴的一个交点为(1,0),
∴.∴.故选B.
4、D
【解析】
当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.
【详解】
当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;
当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,
∴△=(-4)2-4(k-1)×4=0,
解得k=2,
综上可知k的值为1或2,
故选D.
【点睛】
本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.
5、C
【解析】
解:A.,故本选项错误;
B.,故本选项错误;
C.,不能约分,故本选项正确;
D.,故本选项错误.
故选C.
点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.
6、D
【解析】
试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x的取值应满足:x≠﹣1.故选D.
考点:分式有意义的条件.
7、B
【解析】
试题分析:把x=﹣2代入关于x的一元二次方程x2﹣ax+a2=0
即:4+5a+a2=0
解得:a=-1或-4,
故答案选B.
考点:一元二次方程的解;一元二次方程的解法.
8、C
【解析】
y随x的增大而减小,可得一次函数y=kx+b单调递减,k<0,又满足kb<0,可得b>0,由此即可得出答案.
【详解】
∵y随x的增大而减小,∴一次函数y=kx+b单调递减,
∴k<0,
∵kb<0,
∴b>0,
∴直线经过第二、一、四象限,不经过第三象限,
故选C.
【点睛】
本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k、b是常数)的图象和性质是解题的关键.
9、B
【解析】
直接利用有理化因式的定义分析得出答案.
【详解】
∵()(,)
=12﹣2,
=10,
∴与互为有理化因式的是:,
故选B.
【点睛】
本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.
10、B
【解析】
由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.
【详解】
解:∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,∠BAF=45°,
∵△ADE是等边三角形,
∴∠DAE=60°,AD=AE,
∴∠BAE=90°+60°=150°,AB=AE,
∴∠ABE=∠AEB=(180°﹣150°)=15°,
∴∠BFC=∠BAF+∠ABE=45°+15°=60°;
故选:B.
【点睛】
本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.
11、C
【解析】
根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).
【详解】
67500一共5位,从而67500=6.75×104,
故选C.
12、A
【解析】
连AC,OC,BC.线段CF扫过的面积=扇形MAH的面积+△MCH的面积,从而证明即可解决问题.
【详解】
如下图,连AC,OC,BC,设CD交AB于H,
∵CD垂直平分线段OB,
∴CO=CB,
∵OC=OB,
∴OC=OB=BC,
∴,
∵AB是直径,
∴,
∴,
∵,
∴点F在以AC为直径的⊙M上运动,当E从A运动到D时,点F从A运动到H,连接MH,
∵MA=MH,
∴
∴,
∵,
∴CF扫过的面积为,
故选:A.
【点睛】
本题主要考查了阴影部分面积的求法,熟练掌握扇形的面积公式及三角形的面积求法是解决本题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、135
【解析】
试题分析:根据题意可得:∠BDA=30°,∠DAC =60°,在Rt△ABD中,因为AB=45m,所以AD=m,所以在Rt△ACD中,CD=AD=×=135m.
考点:解直角三角形的应用.
14、16
【解析】
根据题意得S△BDE:S△OCE=1:9,故BD:OC=1:3,设D(a,b)则A(a,0),B(a,2b),得C(0,3b),由S△OCE=9得ab=8,故可得解.
【详解】
解:设D(a,b)则A(a,0),B(a,2b)
∵S△BDE:S△OCE=1:9
∴BD:OC=1:3
∴C(0,3b)
∴△COE高是OA的,
∴S△OCE=3ba× =9
解得ab=8
k=a×2b=2ab=2×8=16
故答案为16.
【点睛】
此题利用了:①过某个点,这个点的坐标应适合这个函数解析式;②所给的面积应整理为和反比例函数上的点的坐标有关的形式.
15、4
【解析】
先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出 OA,最后用勾股定理即可得出结论.
【详解】
设圆锥底面圆的半径为 r,
∵AC=6,∠ACB=120°,
∴=2πr,
∴r=2,即:OA=2,
在 Rt△AOC 中,OA=2,AC=6,根据勾股定理得,OC==4,
故答案为4.
【点睛】
本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出 OA的长是解本题的关键.
16、.
【解析】
试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为.
【点睛】
本题考查概率公式,掌握图形特点是解题关键,难度不大.
17、
【解析】
设CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,进而得出PE=a2,再根据△DEP∽△DAB,即可得到,即,可得,即可得到AB的长等于.
【详解】
如图,设CD=AB=a,则BC2=BD2-CD2=1-a2,
由折叠可得,CE=BC,BP=EP,
∴CE2=1-a2,
∴Rt△CDE中,DE2=CE2-CD2=1-2a2,
∵PE∥AB,∠A=90°,
∴∠PED=90°,
∴Rt△DEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,
∴PE=a2,
∵PE∥AB,
∴△DEP∽△DAB,
∴,即,
∴,
即a2+a-1=0,
解得(舍去),
∴AB的长等于AB=.
故答案为.
18、
【解析】
连接CE,作EF⊥BC于F,根据旋转变换的性质得到∠CAE=60°,AC=AE,根据等边三角形的性质得到CE=AC=4,∠ACE=60°,根据直角三角形的性质、勾股定理计算即可.
【详解】
解:连接CE,作EF⊥BC于F,
由旋转变换的性质可知,∠CAE=60°,AC=AE,
∴△ACE是等边三角形,
∴CE=AC=4,∠ACE=60°,
∴∠ECF=30°,
∴EF=CE=2,
由勾股定理得,CF= = ,
∴BF=BC-CF= ,
由勾股定理得,BE== ,
故答案为:.
【点睛】
本题考查的是旋转变换的性质、等边三角形的判定和性质,掌握旋转变换对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)1,45°;(2)∠ACD=∠B, =k;(3).
【解析】
(1)根据已知条件推出△ABP≌△ACD,根据全等三角形的性质得到PB=CD,∠ACD=∠B=45°,于是得到
根据已知条件得到△ABC∽△APD,由相似三角形的性质得到,得到 ABP∽△CAD,根据相似三角形的性质得到结论;
过A作AH⊥BC 于 H,得到△ABH 是等腰直角三角形,求得 AH=BH=4, 根据勾股定理得到根据相似三角形的性质得到 ,推出△ABP∽△CAD,根据相似三角形的性质即可得到结论.
【详解】
(1)∵∠A=90°,
∴AB=AC,
∴∠B=45°,
∵∠PAD=90°,∠APD=∠B=45°,
∴AP=AD,
∴∠BAP=∠CAD,
在△ABP 与△ACD 中,
AB=AC, ∠BAP=∠CAD,AP=AD,
∴△ABP≌△ACD,
∴PB=CD,∠ACD=∠B=45°,
∴=1,
(2)
∵∠BAC=∠PAD=90°,∠B=∠APD,
∴△ABC∽△APD,
∵∠BAP+∠PAC=∠PAC+∠CAD=90°,
∴∠BAP=∠CAD,
∴△ABP∽△CAD,
∴∠ACD=∠B,
(3)过 A 作 AH⊥BC 于 H,
∵∠B=45°,
∴△ABH 是等腰直角三角形,
∵
∴AH=BH=4,
∵BC=12,
∴CH=8,
∴
∴PH==3,
∴PB=1,
∵∠BAC=∠PAD=,∠B=∠APD,
∴△ABC∽△APD,
∴,
∵∠BAP+∠PAC=∠PAC+∠CAD,
∴∠BAP=∠CAD,
∴△ABP∽△CAD,
∴即
∴
过 A 作 AH⊥BC 于 H,
∵∠B=45°,
∴△ABH 是等腰直角三角形,
∵
∴AH=BH=4,
∵BC=12,
∴CH=8,
∴
∴PH==3,
∴PB=7,
∵∠BAC=∠PAD=,∠B=∠APD,
∴△ABC∽△APD,
∴,
∵∠BAP+∠PAC=∠PAC+∠CAD,
∴∠BAP=∠CAD,
∴△ABP∽△CAD,
∴即
∴
【点睛】
本题考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定
和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.
20、见解析
【解析】
根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出四边形AECF是平行四边形,即可得出结论.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,且AD=BC,
∴AF∥EC,
∵BE=DF,
∴AF=EC,
∴四边形AECF是平行四边形,
∴AE=CF.
【点睛】
本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.
21、(I)150、14;(II)众数为3天、中位数为4天,平均数为3.5天;(III)700人
【解析】
(I)根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m的值;
(II)根据众数、中位数和平均数的定义计算可得;
(III)用总人数乘以样本中5天、6天的百分比之和可得.
【详解】
解:(I)本次随机抽样调查的学生人数为18÷12%=150人,m=100﹣(12+10+18+22+24)=14,
故答案为150、14;
(II)众数为3天、中位数为第75、76个数据的平均数,即平均数为=4天,
平均数为=3.5天;
(III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500×(18%+10%)=700人.
【点睛】
此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
22、(1)45°;(2)26°.
【解析】
(1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;
(2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.
【详解】
(1)∵AB是⊙O的直径,∠BAC=38°, ∴∠ACB=90°,
∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,
∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,
∴∠ABD=45°;
(2)连接OD,
∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,
∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,
∵∠AOD是△ODP的一个外角,
∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,
∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,
∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.
【点睛】
本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
23、 (1)见解析;(2)①120°;②45°
【解析】
(1)由AAS证明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出结论;
(2)①证出OA=OP=PA,得出△AOP是等边三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;
②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.
【详解】
(1)∵PC∥AB,
∴∠PCM=∠OAM,∠CPM=∠AOM.
∵点M是OP的中点,
∴OM=PM,在△CPM和△AOM中,
,
∴△CPM≌△AOM(AAS),
∴PC=OA.
∵AB是半圆O的直径,
∴OA=OB,
∴PC=OB.
又PC∥AB,
∴四边形OBCP是平行四边形.
(2)①∵四边形AOCP是菱形,
∴OA=PA,
∵OA=OP,
∴OA=OP=PA,
∴△AOP是等边三角形,
∴∠A=∠AOP=60°,
∴∠BOP=120°;
故答案为120°;
②∵PC是⊙O的切线,
∴OP⊥PC,∠OPC=90°,
∵PC∥AB,
∴∠BOP=90°,
∵OP=OB,
∴△OBP是等腰直角三角形,
∴∠ABP=∠OPB=45°,
故答案为45°.
【点睛】
本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.
24、(1)4;(2)①3个.(1,0),(2,0),(3,0).②或.
【解析】
分析:(1)根据点(4,1)在()的图象上,即可求出的值;
(2)①当时,根据整点的概念,直接写出区域内的整点个数即可.
②分.当直线过(4,0)时,.当直线过(5,0)时,.当直线过(1,2)时,.当直线过(1,3)时四种情况进行讨论即可.
详解:(1)解:∵点(4,1)在()的图象上.
∴,
∴.
(2)① 3个.(1,0),(2,0),(3,0).
② .当直线过(4,0)时:,解得
.当直线过(5,0)时:,解得
.当直线过(1,2)时:,解得
.当直线过(1,3)时:,解得
∴综上所述:或.
点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.
25、(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);
【解析】
(1)根据y=0.5x+m交x轴于点A,进而得出m的值,再利用与y轴交于点B,即可得出B点坐标;(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1.得出可设二次函数y=ax1+bx+c=a(x﹣1)1,进而求出即可;(3)根据当B为直角顶点,当D为直角顶点时,分别利用三角形相似对应边成比例求出即可.
【详解】
(1)∵y=x+1交x轴于点A(﹣4,0),
∴0=×(﹣4)+m,
∴m=1,
与y轴交于点B,
∵x=0,
∴y=1
∴B点坐标为:(0,1),
(1)∵二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1
∴可设二次函数y=a(x﹣1)1
把B(0,1)代入得:a=0.5
∴二次函数的解析式:y=0.5x1﹣1x+1;
(3)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点
由Rt△AOB∽Rt△BOP1
∴,
∴,
得:OP1=1,
∴P1(1,0),
(Ⅱ)作P1D⊥BD,连接BP1,
将y=0.5x+1与y=0.5x1﹣1x+1联立求出两函数交点坐标:
D点坐标为:(5,4.5),
则AD=,
当D为直角顶点时
∵∠DAP1=∠BAO,∠BOA=∠ADP1,
∴△ABO∽△AP1D,
∴, ,
解得:AP1=11.15,
则OP1=11.15﹣4=7.15,
故P1点坐标为(7.15,0);
∴点P的坐标为:P1(1,0)和P1(7.15,0).
【点睛】
此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.
26、4+2.
【解析】
原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.
【详解】
原式=3+1+3-2×
=4+2.
27、(1)证明见解析;(2)结论:成立.理由见解析;(3)①30°,②1+.
【解析】
(1)只要证明AB=ED,AB∥ED即可解决问题;(2)成立.如图2中,过点M作MG∥DE交CE于G.由四边形DMGE是平行四边形,推出ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,可知AB∥DE,AB=DE,即可推出四边形ABDE是平行四边形;
(3)①如图3中,取线段HC的中点I,连接MI,只要证明MI=AM,MI⊥AC,即可解决问题;②设DH=x,则AH= x,AD=2x,推出AM=4+2x,BH=4+2x,由四边形ABDE是平行四边形,推出DF∥AB,推出 ,可得,解方程即可;
【详解】
(1)证明:如图1中,
∵DE∥AB,
∴∠EDC=∠ABM,
∵CE∥AM,
∴∠ECD=∠ADB,
∵AM是△ABC的中线,且D与M重合,
∴BD=DC,
∴△ABD≌△EDC,
∴AB=ED,∵AB∥ED,
∴四边形ABDE是平行四边形.
(2)结论:成立.理由如下:
如图2中,过点M作MG∥DE交CE于G.
∵CE∥AM,
∴四边形DMGE是平行四边形,
∴ED=GM,且ED∥GM,
由(1)可知AB=GM,AB∥GM,
∴AB∥DE,AB=DE,
∴四边形ABDE是平行四边形.
(3)①如图3中,取线段HC的中点I,连接MI,
∵BM=MC,
∴MI是△BHC的中位线,
∴MI∥BH,MI=BH,
∵BH⊥AC,且BH=AM.
∴MI=AM,MI⊥AC,
∴∠CAM=30°.
②设DH=x,则AH=x,AD=2x,
∴AM=4+2x,
∴BH=4+2x,
∵四边形ABDE是平行四边形,
∴DF∥AB,
∴,
∴,
解得x=1+或1﹣(舍弃),
∴DH=1+.
【点睛】
本题考查了四边形综合题、平行四边形的判定和性质、直角三角形30度角的判定、平行线分线成比例定理、三角形的中位线定理等知识,解题的关键能正确添加辅助线,构造特殊四边形解决问题.
2022年贵州安龙县市级名校中考数学四模试卷含解析: 这是一份2022年贵州安龙县市级名校中考数学四模试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中为必然事件的是,已知,,且,则的值为等内容,欢迎下载使用。
2022届重庆市綦江区市级名校中考数学模试卷含解析: 这是一份2022届重庆市綦江区市级名校中考数学模试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,若点P等内容,欢迎下载使用。
2022届重庆市江北区市级名校中考数学对点突破模拟试卷含解析: 这是一份2022届重庆市江北区市级名校中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了下列说法正确的是,下列运算正确的是等内容,欢迎下载使用。