|试卷下载
搜索
    上传资料 赚现金
    重庆市大渡口区市级名校2022年中考数学最后一模试卷含解析
    立即下载
    加入资料篮
    重庆市大渡口区市级名校2022年中考数学最后一模试卷含解析01
    重庆市大渡口区市级名校2022年中考数学最后一模试卷含解析02
    重庆市大渡口区市级名校2022年中考数学最后一模试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆市大渡口区市级名校2022年中考数学最后一模试卷含解析

    展开
    这是一份重庆市大渡口区市级名校2022年中考数学最后一模试卷含解析,共21页。试卷主要包含了在实数,有理数有,如图等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.某车间20名工人日加工零件数如表所示:
    日加工零件数
    4
    5
    6
    7
    8
    人数
    2
    6
    5
    4
    3
    这些工人日加工零件数的众数、中位数、平均数分别是(  )
    A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6
    2.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA的值为(  )
    A. B. C. D.3
    3.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是(  )

    A. B.2 C. D.2
    4.如图,在平面直角坐标系中,位于第二象限,点的坐标是,先把向右平移3个单位长度得到,再把绕点顺时针旋转得到,则点的对应点的坐标是( )

    A. B. C. D.
    5.在实数,有理数有( )
    A.1个 B.2个 C.3个 D.4个
    6.如图:将一个矩形纸片,沿着折叠,使点分别落在点处.若,则的度数为( )

    A. B. C. D.
    7.一元二次方程x2+2x﹣15=0的两个根为(  )
    A.x1=﹣3,x2=﹣5 B.x1=3,x2=5
    C.x1=3,x2=﹣5 D.x1=﹣3,x2=5
    8.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )

    A.2 B.3 C.4 D.5
    9.下列四个数表示在数轴上,它们对应的点中,离原点最远的是(  )
    A.﹣2 B.﹣1 C.0 D.1
    10.关于x的方程3x+2a=x﹣5的解是负数,则a的取值范围是(  )
    A.a< B.a> C.a<﹣ D.a>﹣
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若一个多边形的每一个外角都等于40°,则这个多边形的边数是 .
    12.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为_____.

    13.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.

    14.如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_____.

    15.如图,以长为18的线段AB为直径的⊙O交△ABC的边BC于点D,点E在AC上,直线DE与⊙O相切于点D.已知∠CDE=20°,则的长为_____.

    16.如图所示,把一张长方形纸片沿折叠后,点分别落在点的位置.若,则等于________.

    三、解答题(共8题,共72分)
    17.(8分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.

    18.(8分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元 求甲、乙型号手机每部进价为多少元? 该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案 售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值
    19.(8分)如图1,四边形ABCD,边AD、BC的垂直平分线相交于点O.连接OA、OB、OC、OD.OE是边CD的中线,且∠AOB+∠COD=180°
    (1)如图2,当△ABO是等边三角形时,求证:OE=AB;
    (2)如图3,当△ABO是直角三角形时,且∠AOB=90°,求证:OE=AB;
    (3)如图4,当△ABO是任意三角形时,设∠OAD=α,∠OBC=β,
    ①试探究α、β之间存在的数量关系?
    ②结论“OE=AB”还成立吗?若成立,请你证明;若不成立,请说明理由.

    20.(8分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中, 每个小正方形的边长是1个单位长度)
    画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.
    21.(8分)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,线段BC与抛物线的对称轴交于点E、P为线段BC上的一点(不与点B、C重合),过点P作PF∥y轴交抛物线于点F,连结DF.设点P的横坐标为m.
    (1)求此抛物线所对应的函数表达式.
    (2)求PF的长度,用含m的代数式表示.
    (3)当四边形PEDF为平行四边形时,求m的值.

    22.(10分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:
    运动项目

    频数(人数)

    羽毛球

    30

    篮球



    乒乓球

    36

    排球



    足球

    12


    请根据以上图表信息解答下列问题:频数分布表中的 , ;在扇形统计图中,“排球”所在的扇形的圆心角为 度;全校有多少名学生选择参加乒乓球运动?
    23.(12分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB 的平分线.
    求证:AB=DC.

    24.计算:
    (1)﹣12018+|﹣2|+2cos30°;
    (2)(a+1)2+(1﹣a)(a+1);



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    5出现了6次,出现的次数最多,则众数是5;
    把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;
    平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;
    故答案选D.
    2、B
    【解析】
    根据勾股定理和三角函数即可解答.
    【详解】
    解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,
    设a=x,则c=3x,b==2x.
    即tanA==.
    故选B.
    【点睛】
    本题考查勾股定理和三角函数,熟悉掌握是解题关键.
    3、A
    【解析】
    试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.
    解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,
    ∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
    ∴AB=2EF,DC=DF+CF=8,
    作DH⊥BC于H,
    ∵AD∥BC,∠B=90°,
    ∴四边形ABHD为矩形,
    ∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,
    在Rt△DHC中,DH==2,
    ∴EF=DH=.
    故选A.

    点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
    4、D
    【解析】
    根据要求画出图形,即可解决问题.
    【详解】
    解:根据题意,作出图形,如图:

    观察图象可知:A2(4,2);
    故选:D.
    【点睛】
    本题考查平移变换,旋转变换等知识,解题的关键是正确画出图象,属于中考常考题型.
    5、D
    【解析】
    试题分析:根据有理数是有限小数或无限循环小数,可得答案:
    是有理数,故选D.
    考点:有理数.
    6、B
    【解析】
    根据折叠前后对应角相等可知.
    解:设∠ABE=x,
    根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,
    所以50°+x+x=90°,
    解得x=20°.
    故选B.
    “点睛”本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
    7、C
    【解析】
    运用配方法解方程即可.
    【详解】
    解:x2+2x﹣15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.
    故选择C.
    【点睛】
    本题考查了解一元二次方程,选择合适的解方程方法是解题关键.
    8、B
    【解析】
    ∵四边形ABCD是正方形,
    ∴∠A=∠B=90°,
    ∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,
    ∵∠GEF=90°,
    ∴∠GEA+∠FEB=90°,
    ∴∠AGE=∠FEB,∠AEG=∠EFB,
    ∴△AEG∽△BFE,
    ∴,
    又∵AE=BE,
    ∴AE2=AG•BF=2,
    ∴AE=(舍负),
    ∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,
    ∴GF的长为3,
    故选B.
    【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.
    9、A
    【解析】
    由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解.
    【详解】
    ∵|-1|=1,|-1|=1,
    ∴|-1|>|-1|=1>0,
    ∴四个数表示在数轴上,它们对应的点中,离原点最远的是-1.
    故选A.
    【点睛】
    本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想.
    10、D
    【解析】
    先解方程求出x,再根据解是负数得到关于a的不等式,解不等式即可得.
    【详解】
    解方程3x+2a=x﹣5得
    x=,
    因为方程的解为负数,
    所以<0,
    解得:a>﹣.
    【点睛】
    本题考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式时,要注意的是:若在不等式左右两边同时乘以或除以同一个负数时,不等号方向要改变.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、9
    【解析】
    解:360÷40=9,即这个多边形的边数是9
    12、2
    【解析】
    过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,
    【详解】
    解:连接OB,OA′,AA′,
    ∵AA′关于直线MN对称,

    ∵∠AMN=40°,
    ∴∠A′ON=80°,∠BON=40°,
    ∴∠A′OB=120°,
    过O作OQ⊥A′B于Q,
    在Rt△A′OQ中,OA′=2,
    ∴A′B=2A′Q=
    即PA+PB的最小值.
    【点睛】
    本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键.
    13、1.
    【解析】
    设小矩形的长为x,宽为y,则由图1可得5y=3x;由图2可知2y-x=2.
    【详解】
    解:设小矩形的长为x,宽为y,则可列出方程组,
    ,解得,
    则小矩形的面积为6×10=1.
    【点睛】
    本题考查了二元一次方程组的应用.
    14、
    【解析】
    设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.
    【详解】
    设CE=x.
    ∵四边形ABCD是矩形,
    ∴AD=BC=5,CD=AB=3,∠A=∠D=90°.
    ∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,
    ∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.
    在Rt△ABF中,由勾股定理得:
    AF2=52-32=16,
    ∴AF=4,DF=5-4=1.
    在Rt△DEF中,由勾股定理得:
    EF2=DE2+DF2,
    即x2=(3-x)2+12,
    解得:x=,
    故答案为.
    15、7π
    【解析】
    连接OD,由切线的性质和已知条件可求出∠AOD的度数,再根据弧长公式即可求出的长.
    【详解】
    连接OD,

    ∵直线DE与⊙O相切于点D,
    ∴∠EDO=90°,
    ∵∠CDE=20°,
    ∴∠ODB=180°-90°-20°=70°,
    ∵OD=OB,
    ∴∠ODB=∠OBD=70°,
    ∴∠AOD=140°,
    ∴的长==7π,
    故答案为:7π.
    【点睛】
    本题考查了切线的性质、等腰三角形的判断和性质以及弧长公式的运用,求出∠AOD的度数是解题的关键.
    16、50°
    【解析】
    先根据平行线的性质得出∠DEF的度数,再根据翻折变换的性质得出∠D′EF的度数,根据平角的定义即可得出结论.
    【详解】
    ∵AD∥BC,∠EFB=65°,
    ∴∠DEF=65°,
    又∵∠DEF=∠D′EF,
    ∴∠D′EF=65°,
    ∴∠AED′=50°.
    【点睛】
    本题考查翻折变换(折叠问题)和平行线的性质,解题的关键是掌握翻折变换(折叠问题)和平行线的性质.

    三、解答题(共8题,共72分)
    17、(1)(2)作图见解析;(3).
    【解析】
    (1)利用平移的性质画图,即对应点都移动相同的距离.
    (2)利用旋转的性质画图,对应点都旋转相同的角度.
    (3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长.
    【详解】
    解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,△A1B1C1即为所求.
    (2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,△A1B2C2即为所求.

    (3)∵,
    ∴点B所走的路径总长=.
    考点:1.网格问题;2.作图(平移和旋转变换);3.勾股定理;4.弧长的计算.
    18、 (1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2) 共有四种方案;(3) 当m=80时,w始终等于8000,取值与a无关
    【解析】
    (1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元根据题意列方程组求出x、y的值即可;(2)设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,根据题意列不等式组求出a的取值范围,根据a为整数求出a的值即可明确方案(3)
    利用利润=单个利润数量,用a表示出利润W,当利润与a无关时,(2)中的方案利润相同,求出m值即可;
    【详解】
    (1) 设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,
    ,解得,
    (2) 设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,
    17400≤1000a+800(20-a)≤18000,解得7≤a≤10,
    ∵a为自然数,
    ∴有a为7、8、9、10共四种方案,
    (3) 甲种型号手机每部利润为1000×40%=400,
    w=400a+(1280-800-m)(20-a)=(m-80)a+9600-20m,
    当m=80时,w始终等于8000,取值与a无关.
    【点睛】
    本题考查了列二元一次方程组解实际问题的运用,根据题意找出等量关系列出方程是解题关键.
    19、(1)详见解析;(2)详见解析;(3)①α+β=90°;②成立,理由详见解析.
    【解析】
    (1)作OH⊥AB于H,根据线段垂直平分线的性质得到OD=OA,OB=OC,证明△OCE≌△OBH,根据全等三角形的性质证明;
    (2)证明△OCD≌△OBA,得到AB=CD,根据直角三角形的性质得到OE=CD,证明即可;
    (3)①根据等腰三角形的性质、三角形内角和定理计算;
    ②延长OE至F,是EF=OE,连接FD、FC,根据平行四边形的判定和性质、全等三角形的判定和性质证明.
    【详解】
    (1)作OH⊥AB于H,

    ∵AD、BC的垂直平分线相交于点O,
    ∴OD=OA,OB=OC,
    ∵△ABO是等边三角形,
    ∴OD=OC,∠AOB=60°,
    ∵∠AOB+∠COD=180°
    ∴∠COD=120°,
    ∵OE是边CD的中线,
    ∴OE⊥CD,
    ∴∠OCE=30°,
    ∵OA=OB,OH⊥AB,
    ∴∠BOH=30°,BH=AB,
    在△OCE和△BOH中,

    ∴△OCE≌△OBH,
    ∴OE=BH,
    ∴OE=AB;
    (2)∵∠AOB=90°,∠AOB+∠COD=180°,
    ∴∠COD=90°,
    在△OCD和△OBA中,

    ∴△OCD≌△OBA,
    ∴AB=CD,
    ∵∠COD=90°,OE是边CD的中线,
    ∴OE=CD,
    ∴OE=AB;
    (3)①∵∠OAD=α,OA=OD,
    ∴∠AOD=180°﹣2α,
    同理,∠BOC=180°﹣2β,
    ∵∠AOB+∠COD=180°,
    ∴∠AOD+∠COB=180°,
    ∴180°﹣2α+180°﹣2β=180°,
    整理得,α+β=90°;
    ②延长OE至F,使EF=OE,连接FD、FC,

    则四边形FDOC是平行四边形,
    ∴∠OCF+∠COD=180°,,
    ∴∠AOB=∠FCO,
    在△FCO和△AOB中,

    ∴△FCO≌△AOB,
    ∴FO=AB,
    ∴OE=FO=AB.
    【点睛】
    本题是四边形的综合题,考查了线段垂直平分线的性质、全等三角形的判定和性质以及直角三角形斜边上的中线性质、平行四边形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.
    20、解:(1)如图,△A1B1C1即为所求,C1(2,-2).(2)如图,△A2BC2即为所求,C2(1,0),△A2BC2的面积:10
    【解析】
    分析:(1)根据网格结构,找出点A、B、C向下平移4个单位的对应点、、 的位置,然后顺次连接即可,再根据平面直角坐标系写出点的坐标;(2)延长BA到使A=AB,延长BC到,使C=BC,然后连接A2C2即可,再根据平面直角坐标系写出点的坐标,利用△B所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.
    本题解析:(1)如图,△A1B1C1即为所求,C1(2,-2)

    (2)如图,△B为所求, (1,0),
    △B 的面积:
    6×4−×2×6−×2×4−×2×4=24−6−4−4=24−14=10,
    21、(1)y=-x2+2x+1;(2)-m2+1m.(1)2.
    【解析】
    (1)根据待定系数法,可得函数解析式;
    (2)根据自变量与函数值的对应关系,可得C点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得答案;
    (1)根据自变量与函数值的对应关系,可得F点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得DE的长,根据平行四边形的对边相等,可得关于m的方程,根据解方程,可得m的值.
    【详解】
    解:(1)∵点A(-1,0),点B(1,0)在抛物线y=-x2+bx+c上,
    ∴,解得,
    此抛物线所对应的函数表达式y=-x2+2x+1;
    (2)∵此抛物线所对应的函数表达式y=-x2+2x+1,
    ∴C(0,1).
    设BC所在的直线的函数解析式为y=kx+b,将B、C点的坐标代入函数解析式,得
    ,解得,
    即BC的函数解析式为y=-x+1.
    由P在BC上,F在抛物线上,得
    P(m,-m+1),F(m,-m2+2m+1).
    PF=-m2+2m+1-(-m+1)=-m2+1m.
    (1)如图

    ∵此抛物线所对应的函数表达式y=-x2+2x+1,
    ∴D(1,4).
    ∵线段BC与抛物线的对称轴交于点E,
    当x=1时,y=-x+1=2,
    ∴E(1,2),
    ∴DE=4-2=2.
    由四边形PEDF为平行四边形,得
    PF=DE,即-m2+1m=2,
    解得m1=1,m2=2.
    当m=1时,线段PF与DE重合,m=1(不符合题意,舍).
    当m=2时,四边形PEDF为平行四边形.
    考点:二次函数综合题.
    22、 (1)24,1;(2) 54;(3)360.
    【解析】
    (1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;
    (2)利用360°乘以对应的百分比即可求得;
    (3)求得全校总人数,然后利用总人数乘以对应的百分比求解.
    【详解】
    (1)抽取的人数是36÷30%=120(人),
    则a=120×20%=24,
    b=120﹣30﹣24﹣36﹣12=1.
    故答案是:24,1;
    (2)“排球”所在的扇形的圆心角为360°×=54°,
    故答案是:54;
    (3)全校总人数是120÷10%=1200(人),
    则选择参加乒乓球运动的人数是1200×30%=360(人).
    23、∵平分平分,

    在与中,



    【解析】
    分析:根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.
    解答:证明:∵AC平分∠BCD,BC平分∠ABC,
    ∴∠DBC=∠ABC,∠ACB=∠DCB,
    ∵∠ABC=∠DCB,
    ∴∠ACB=∠DBC,
    ∵在△ABC与△DCB中,

    ∴△ABC≌△DCB,
    ∴AB=DC.
    24、 (1)1;(2)2a+2
    【解析】
    (1)根据特殊角锐角三角函数值、绝对值的性质即可求出答案;
    (2)先化简原式,然后将x的值代入原式即可求出答案.
    【详解】
    解:(1)原式=﹣1+2﹣+2×=1;
    (2)原式=a2+2a+1+1﹣a2=2a+2.
    【点睛】
    本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.

    相关试卷

    重庆市大渡口区市级名校2021-2022学年中考数学押题试卷含解析: 这是一份重庆市大渡口区市级名校2021-2022学年中考数学押题试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,二次函数y=ax2+bx+c等内容,欢迎下载使用。

    2022年重庆市大渡口区市级名校中考数学考试模拟冲刺卷含解析: 这是一份2022年重庆市大渡口区市级名校中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了下列命题正确的是,下列运算正确的是等内容,欢迎下载使用。

    2022年山东省济南实验市级名校中考数学最后一模试卷含解析: 这是一份2022年山东省济南实验市级名校中考数学最后一模试卷含解析,共21页。试卷主要包含了若点A,﹣2018的相反数是,下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map