终身会员
搜索
    上传资料 赚现金

    浙江省嘉兴市秀洲片区2021-2022学年中考五模数学试题含解析

    立即下载
    加入资料篮
    浙江省嘉兴市秀洲片区2021-2022学年中考五模数学试题含解析第1页
    浙江省嘉兴市秀洲片区2021-2022学年中考五模数学试题含解析第2页
    浙江省嘉兴市秀洲片区2021-2022学年中考五模数学试题含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省嘉兴市秀洲片区2021-2022学年中考五模数学试题含解析

    展开

    这是一份浙江省嘉兴市秀洲片区2021-2022学年中考五模数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,计算2a2+3a2的结果是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.一个几何体的三视图如图所示,根据图示的数据计算出该几何体的表面积(  )

    A.65π B.90π C.25π D.85π
    2.已知抛物线的图像与轴交于、两点(点在点的右侧),与轴交于点.给出下列结论:①当的条件下,无论取何值,点是一个定点;②当的条件下,无论取何值,抛物线的对称轴一定位于轴的左侧;③的最小值不大于;④若,则.其中正确的结论有( )个.
    A.1个 B.2个 C.3个 D.4个
    3.已知一次函数y=kx+3和y=k1x+5,假设k<0且k1>0,则这两个一次函数的图像的交点在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    4.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是(  )

    A. B.5 C.6 D.
    5.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为( )

    A.16 B.14 C.12 D.6
    6.已知直线与直线的交点在第一象限,则的取值范围是( )
    A. B. C. D.
    7.如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为点E,DE=1,则BC=  (  )

    A. B.2 C.3 D.+2
    8.若在同一直角坐标系中,正比例函数y=k1x与反比例函数y=的图象无交点,则有(  )
    A.k1+k2>0 B.k1+k2<0 C.k1k2>0 D.k1k2<0
    9.计算2a2+3a2的结果是( )
    A.5a4 B.6a2 C.6a4 D.5a2
    10.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是(  )

    A.25° B.35° C.45° D.65°
    11.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是( )

    A.① B.② C.③ D.④
    12.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为(  )

    A.2 B.3 C.4 D.6
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.某自然保护区为估计该地区一种珍稀鸟类的数量,先捕捉了20只,给它们做上标记后放回,过一段时间待它们完全混合于同类后又捕捉了20只,发现其中有4只带有标记,从而估计该地区此种鸟类的数量大约有______只
    14.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为_____.

    15.若关于x的函数与x轴仅有一个公共点,则实数k的值为 .
    16.已知关于x的方程有两个不相等的实数根,则m的最大整数值是 .
    17.如图,矩形ABCD中,E为BC的中点,将△ABE沿直线AE折叠时点B落在点F处,连接FC,若∠DAF=18°,则∠DCF=_____度.

    18.已知 a、b 是方程 x2﹣2x﹣1=0 的两个根,则 a2﹣a+b 的值是_______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)为响应国家“厉行节约,反对浪费”的号召,某班一课外活动小组成员在全校范围内随机抽取了若干名学生,针对“你每天是否会节约粮食”这个问题进行了调查,并将调查结果分成三组(A.会;B.不会;C.有时会),绘制了两幅不完整的统计图(如图)
    (1)这次被抽查的学生共有______人,扇形统计图中,“A组”所对应的圆心度数为______;
    (2)补全两个统计图;
    (3)如果该校学生共有2000人,请估计“每天都会节约粮食”的学生人数;
    (4)若不节约零食造成的浪费,按平均每人每天浪费5角钱计算,小江认为,该校学生一年(365天)共将浪费:2000×20%×0.5×365=73000(元),你认为这种说法正确吗?并说明理由.

    20.(6分)车辆经过润扬大桥收费站时,4个收费通道 A.B、C、D中,可随机选择其中的一个通过.一辆车经过此收费站时,选择 A通道通过的概率是 ;求两辆车经过此收费站时,选择不同通道通过的概率.
    21.(6分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:

    (1)该超市“元旦”期间共销售   个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是   度;
    (2)补全条形统计图;
    (3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?
    22.(8分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:
    (1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;
    (2)分别求出这两个投资方案的最大年利润;
    (3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?
    23.(8分)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.1°,∠PBA=26.1.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)
    (参考数据:sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)

    24.(10分)计算:.先化简,再求值:,其中.
    25.(10分)如图1,正方形ABCD的边长为8,动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,当点E运动到终点C时,点F也停止运动,连接AE交对角线BD于点N,连接EF交BC于点M,连接AM.
    (参考数据:sin15°=,cos15°=,tan15°=2﹣)
    (1)在点E、F运动过程中,判断EF与BD的位置关系,并说明理由;
    (2)在点E、F运动过程中,①判断AE与AM的数量关系,并说明理由;②△AEM能为等边三角形吗?若能,求出DE的长度;若不能,请说明理由;
    (3)如图2,连接NF,在点E、F运动过程中,△ANF的面积是否变化,若不变,求出它的面积;若变化,请说明理由.

    26.(12分)如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.
    (1)求证:BC是⊙O的切线;
    (2)⊙O的半径为5,tanA=,求FD的长.

    27.(12分)计算:()﹣2﹣+(﹣2)0+|2﹣|



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据三视图可判断该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,再利用勾股定理计算出母线长,然后求底面积与侧面积的和即可.
    【详解】
    由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,
    所以圆锥的母线长==13,
    所以圆锥的表面积=π×52+×2π×5×13=90π.
    故选B.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.
    2、C
    【解析】
    ①利用抛物线两点式方程进行判断;
    ②根据根的判别式来确定a的取值范围,然后根据对称轴方程进行计算;
    ③利用顶点坐标公式进行解答;
    ④利用两点间的距离公式进行解答.
    【详解】
    ①y=ax1+(1-a)x-1=(x-1)(ax+1).则该抛物线恒过点A(1,0).故①正确;
    ②∵y=ax1+(1-a)x-1(a>0)的图象与x轴有1个交点,
    ∴△=(1-a)1+8a=(a+1)1>0,
    ∴a≠-1.
    ∴该抛物线的对称轴为:x=,无法判定的正负.
    故②不一定正确;
    ③根据抛物线与y轴交于(0,-1)可知,y的最小值不大于-1,故③正确;
    ④∵A(1,0),B(-,0),C(0,-1),
    ∴当AB=AC时,,
    解得:a=,故④正确.
    综上所述,正确的结论有3个.
    故选C.
    【点睛】
    考查了二次函数与x轴的交点及其性质.(1).抛物线是轴对称图形.对称轴为直线x = - ,对称轴与抛物线唯一的交点为抛物线的顶点P;特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0);(1).抛物线有一个顶点P,坐标为P ( -b/1a ,(4ac-b1)/4a ),当-=0,〔即b=0〕时,P在y轴上;当Δ= b1-4ac=0时,P在x轴上;(3).二次项系数a决定抛物线的开口方向和大小;当a>0时,抛物线开口向上;当a0),对称轴在y轴左;当a与b异号时(即ab0时,抛物线与x轴有1个交点;Δ= b1-4ac=0时,抛物线与x轴有1个交点;
    Δ= b1-4ac0时,函数在x= -b/1a处取得最小值f(-b/1a)=〔4ac-b1〕/4a;在{x|x-b/1a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b1/4a}相反不变;当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax1+c(a≠0).
    3、B
    【解析】
    依题意在同一坐标系内画出图像即可判断.
    【详解】
    根据题意可作两函数图像,由图像知交点在第二象限,故选B.

    【点睛】
    此题主要考查一次函数的图像,解题的关键是根据题意作出相应的图像.
    4、B
    【解析】
    易证△CFE∽△BEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题.
    【详解】
    若点E在BC上时,如图

    ∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,
    ∴∠CFE=∠AEB,
    ∵在△CFE和△BEA中,

    ∴△CFE∽△BEA,
    由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BE=CE=x﹣,即,
    ∴,
    当y=时,代入方程式解得:x1=(舍去),x2=,
    ∴BE=CE=1,∴BC=2,AB=,
    ∴矩形ABCD的面积为2×=5;
    故选B.
    【点睛】
    本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键.
    5、C
    【解析】
    先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
    【详解】
    ∵AB=AC=15,AD平分∠BAC,
    ∴D为BC中点,
    ∵点E为AC的中点,
    ∴DE为△ABC中位线,
    ∴DE=AB,
    ∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
    ∴AB+AC+BC=42,
    ∴BC=42-15-15=12,
    故选C.
    【点睛】
    此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.
    6、C
    【解析】
    根据题意画出图形,利用数形结合,即可得出答案.
    【详解】
    根据题意,画出图形,如图:

    当时,两条直线无交点;
    当时,两条直线的交点在第一象限.
    故选:C.
    【点睛】
    本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.
    7、C
    【解析】
    试题分析:根据角平分线的性质可得CD=DE=1,根据Rt△ADE可得AD=2DE=2,根据题意可得△ADB为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1.
    考点:角平分线的性质和中垂线的性质.
    8、D
    【解析】
    当k1,k2同号时,正比例函数y=k1x与反比例函数y=的图象有交点;当k1,k2异号时,正比例函数y=k1x与反比例函数y=的图象无交点,即可得当k1k2<0时,正比例函数y=k1x与反比例函数y=的图象无交点,故选D.
    9、D
    【解析】
    直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
    【详解】
    2a2+3a2=5a2.
    故选D.
    【点睛】
    本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
    10、A
    【解析】
    如图,过点C作CD∥a,再由平行线的性质即可得出结论.
    【详解】
    如图,过点C作CD∥a,则∠1=∠ACD,
    ∵a∥b,
    ∴CD∥b,
    ∴∠2=∠DCB,
    ∵∠ACD+∠DCB=90°,
    ∴∠1+∠2=90°,
    又∵∠1=65°,
    ∴∠2=25°,
    故选A.

    【点睛】
    本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键.
    11、B
    【解析】
    根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。因此,通过观察发现,当涂黑②时,所形成的图形关于点A中心对称。故选B。

    12、B
    【解析】
    根据三角形的中位线等于第三边的一半进行计算即可.
    【详解】
    ∵D、E分别是△ABC边AB、AC的中点,
    ∴DE是△ABC的中位线,
    ∵BC=6,
    ∴DE=BC=1.
    故选B.
    【点睛】
    本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    求出样本中有标记的所占的百分比,再用样本容量除以百分比即可解答.
    【详解】
    解:

    只.
    故答案为:1.
    【点睛】
    本题考查的是通过样本去估计总体,总体百分比约等于样本百分比.
    14、
    【解析】
    如图,作辅助线;根据题意首先求出AB、BC的长度;借助面积公式求出A′D、OD的长度,即可解决问题.
    【详解】
    解:∵四边形OABC是矩形,
    ∴OA=BC,AB=OC,tan∠BOC==,
    ∴AB=2OA,
    ∵,OB=,
    ∴OA=2,AB=2.∵OA′由OA翻折得到,
    ∴OA′= OA=2.
    如图,过点A′作A′D⊥x轴与点D;
    设A′D=a,OD=b;
    ∵四边形ABCO为矩形,
    ∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;
    设AB=OC=a,BC=AO=b;
    ∵OB=,tan∠BOC=,
    ∴,
    解得: ;
    由题意得:A′O=AO=2;△ABO≌△A′BO;
    由勾股定理得:x2+y2=2①,
    由面积公式得:xy+2××2×2=(x+2)×(y+2)②;
    联立①②并解得:x=,y=.

    故答案为(−,)
    【点睛】
    该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要求.
    15、0或-1。
    【解析】由于没有交待是二次函数,故应分两种情况:
    当k=0时,函数是一次函数,与x轴仅有一个公共点。
    当k≠0时,函数是二次函数,若函数与x轴仅有一个公共点,则有两个相等的实数根,即。
    综上所述,若关于x的函数与x轴仅有一个公共点,则实数k的值为0或-1。
    16、1.
    【解析】
    试题分析:∵关于x的方程有两个不相等的实数根,
    ∴.
    ∴m的最大整数值为1.
    考点:1.一元二次方程根的判别式;2.解一元一次不等式.
    17、1 .
    【解析】
    由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=1°,由直角三角形的性质得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性质求出∠ECF=54°,即可得出∠DCF的度数.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴∠BAD=∠B=∠BCD=90°,
    由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,
    ∵∠DAF=18°,
    ∴∠BAE=∠FAE=×(90°﹣18°)=1°,
    ∴∠AEF=∠AEB=90°﹣1°=54°,
    ∴∠CEF=180°﹣2×54°=72°,
    ∵E为BC的中点,
    ∴BE=CE,
    ∴FE=CE,
    ∴∠ECF=×(180°﹣72°)=54°,
    ∴∠DCF=90°﹣∠ECF=1°.
    故答案为1.
    【点睛】
    本题考查了矩形的性质、折叠变换的性质、直角三角形的性质、等腰三角形的性质、三角形内角和定理等知识点,求出∠ECF的度数是解题的关键.
    18、1
    【解析】
    根据一元二次方程的解及根与系数的关系,可得出a2-2a=1、a+b=2,将其代入a2-a+b中即可求出结论.
    【详解】
    ∵a、b是方程x2-2x-1=0的两个根,
    ∴a2-2a=1,a+b=2,
    ∴a2-a+b=a2-2a+(a+b)=1+2=1.
    故答案为1.
    【点睛】
    本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于-、两根之积等于是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)50 ,108°(2)见解析;(3)600人;(4)不正确,见解析.
    【解析】
    (1)由C组人数及其所占百分比可得总人数,用360°乘以A组人数所占比例可得;
    (2)根据百分比之和为1求得A组百分比补全图1,总人数乘以B的百分比求得其人数即可补全图2;
    (3)总人数乘以样本中A所占百分比可得;
    (4)由样本中浪费粮食的人数所占比例不是20%即可作出判断.
    【详解】
    (1)这次被抽查的学生共有25÷50%=50人,
    扇形统计图中,“A组”所对应的圆心度数为360°×=108°,
    故答案为50、108°;
    (2)图1中A对应的百分比为1-20%-50%=30%,图2中B类别人数为50×20%=5,
    补全图形如下:

    (3)估计“每天都会节约粮食”的学生人数为2000×30%=600人;
    (4)不正确,
    因为在样本中浪费粮食的人数所占比例不是20%,
    所以这种说法不正确.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时本题还考查了通过样本来估计总体.
    20、(1);(2).
    【解析】
    试题分析:(1)根据概率公式即可得到结论;
    (2)画出树状图即可得到结论.
    试题解析:(1)选择 A通道通过的概率=,
    故答案为;
    (2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.

    21、(1)2400,60;(2)见解析;(3)500
    【解析】
    整体分析:
    (1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360°即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.
    解:(1)共销售绿色鸡蛋:1200÷50%=2400个,
    A品牌所占的圆心角:×360°=60°;
    故答案为2400,60;
    (2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,
    补全统计图如图:

    (3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.
    22、(1)y1=(120-a)x(1≤x≤125,x为正整数),y2=100x-0.5x2(1≤x≤120,x为正整数);(2)110-125a(万元),10(万元);(3)当40<a<80时,选择方案一;当a=80时,选择方案一或方案二均可;当80<a<100时,选择方案二.
    【解析】
    (1)根据题意直接得出y1与y2与x的函数关系式即可;
    (2)根据a的取值范围可知y1随x的增大而增大,可求出y1的最大值.又因为﹣0.5<0,可求出y2的最大值;
    (3)第三问要分两种情况决定选择方案一还是方案二.当2000﹣200a>1以及2000﹣200a<1.
    【详解】
    解:(1)由题意得:
    y1=(120﹣a)x(1≤x≤125,x为正整数),
    y2=100x﹣0.5x2(1≤x≤120,x为正整数);
    (2)①∵40<a<100,∴120﹣a>0,
    即y1随x的增大而增大,
    ∴当x=125时,y1最大值=(120﹣a)×125=110﹣125a(万元)
    ②y2=﹣0.5(x﹣100)2+10,
    ∵a=﹣0.5<0,
    ∴x=100时,y2最大值=10(万元);
    (3)∵由110﹣125a>10,
    ∴a<80,
    ∴当40<a<80时,选择方案一;
    由110﹣125a=10,得a=80,
    ∴当a=80时,选择方案一或方案二均可;
    由110﹣125a<10,得a>80,
    ∴当80<a<100时,选择方案二.
    考点:二次函数的应用.
    23、49.2米
    【解析】
    设PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的长度,继而也可确定小桥在小道上的位置.
    【详解】
    解:设PD=x米,
    ∵PD⊥AB,∴∠ADP=∠BDP=90°.
    在Rt△PAD中,,∴.
    在Rt△PBD中,,∴.
    又∵AB=80.0米,∴,解得:x≈24.6,即PD≈24.6米.
    ∴DB=2x=49.2米.
    答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.
    24、 (1)1;(2)2-1.
    【解析】
    (1)分别计算负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根;
    (2)先把括号内通分相减,再计算分式的除法,除以一个分式,等于乘它的分子、分母交换位置.
    【详解】
    (1)原式=3+﹣1﹣2×+1﹣2=3+﹣1﹣+1﹣2=1.
    (2)原式=[﹣]•
    =•
    =,
    当x=﹣2时,原式= ==2-1.
    【点睛】
    本题考查负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根以及分式的化简求值,解题关键是熟练掌握以上性质和分式的混合运算.
    25、(1)EF∥BD,见解析;(2)①AE=AM,理由见解析;②△AEM能为等边三角形,理由见解析;(3)△ANF的面积不变,理由见解析
    【解析】
    (1)依据DE=BF,DE∥BF,可得到四边形DBFE是平行四边形,进而得出EF∥DB;
    (2)依据已知条件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等边三角形,则∠EAM=60°,依据△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即当DE=16−8时,△AEM是等边三角形;
    (3)设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,依据△DEN∽△BNA,即可得出PN=,根据S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面积不变.
    【详解】
    解:(1)EF∥BD.
    证明:∵动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,
    ∴DE=BF,
    又∵DE∥BF,
    ∴四边形DBFE是平行四边形,
    ∴EF∥DB;
    (2)①AE=AM.
    ∵EF∥BD,
    ∴∠F=∠ABD=45°,
    ∴MB=BF=DE,
    ∵正方形ABCD,
    ∴∠ADC=∠ABC=90°,AB=AD,
    ∴△ADE≌△ABM,
    ∴AE=AM;
    ②△AEM能为等边三角形.
    若△AEM是等边三角形,则∠EAM=60°,
    ∵△ADE≌△ABM,
    ∴∠DAE=∠BAM=15°,
    ∵tan∠DAE=,AD=8,
    ∴2﹣=,
    ∴DE=16﹣8,
    即当DE=16﹣8时,△AEM是等边三角形;
    (3)△ANF的面积不变.
    设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,

    ∵CD∥AB,
    ∴△DEN∽△BNA,
    ∴=,
    ∴,
    ∴PN=,
    ∴S△ANF=AF×PN=×(x+8)×=32,
    即△ANF的面积不变.
    【点睛】
    本题属于四边形综合题,主要考查了平行四边形的判定与性质,等边三角形的性质,全等三角形的判定与性质,解直角三角形以及相似三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造相似三角形,利用全等三角形的 对应边相等,相似三角形的对应边成比例得出结论.
    26、(1)证明见解析(2)
    【解析】
    (1)由点G是AE的中点,根据垂径定理可知OD⊥AE,由等腰三角形的性质可得∠CBF=∠DFG,∠D=∠OBD,从而∠OBD+∠CBF=90°,从而可证结论;
    (2)连接AD,解Rt△OAG可求出OG=3,AG=4,进而可求出DG的长,再证明△DAG∽△FDG,由相似三角形的性质求出FG的长,再由勾股定理即可求出FD的长.
    【详解】
    (1)∵点G是AE的中点,
    ∴OD⊥AE,
    ∵FC=BC,
    ∴∠CBF=∠CFB,
    ∵∠CFB=∠DFG,
    ∴∠CBF=∠DFG
    ∵OB=OD,
    ∴∠D=∠OBD,
    ∵∠D+∠DFG=90°,
    ∴∠OBD+∠CBF=90°
    即∠ABC=90°
    ∵OB是⊙O的半径,
    ∴BC是⊙O的切线;
    (2)连接AD,

    ∵OA=5,tanA=,
    ∴OG=3,AG=4,
    ∴DG=OD﹣OG=2,
    ∵AB是⊙O的直径,
    ∴∠ADF=90°,
    ∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°
    ∴∠DAG=∠FDG,
    ∴△DAG∽△FDG,
    ∴,
    ∴DG2=AG•FG,
    ∴4=4FG,
    ∴FG=1
    ∴由勾股定理可知:FD=.
    【点睛】
    本题考查了垂径定理,等腰三角形的性质,切线的判定,解直角三角形,相似三角形的判定与性质,勾股定理等知识,求出∠CBF=∠DFG,∠D=∠OBD是解(1)的关键,证明证明△DAG∽△FDG是解(2)的关键.
    27、2
    【解析】
    直接利用零指数幂的性质以及负指数幂的性质、绝对值的性质、二次根式以及立方根的运算法则分别化简得出答案.
    【详解】
    解:原式=4﹣3+1+2﹣2=2.
    【点睛】
    本题考查实数的运算,难点也在于对原式中零指数幂、负指数幂、绝对值、二次根式以及立方根的运算化简,关键要掌握这些知识点.

    相关试卷

    浙江省嘉兴市秀洲片区2023-2024学年数学八上期末调研试题含答案:

    这是一份浙江省嘉兴市秀洲片区2023-2024学年数学八上期末调研试题含答案,共8页。试卷主要包含了如图,直线与的图像交于点等内容,欢迎下载使用。

    浙江省嘉兴市秀洲片区2022-2023学年七下数学期末检测试题含答案:

    这是一份浙江省嘉兴市秀洲片区2022-2023学年七下数学期末检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列命题中,不正确的是,已知数据等内容,欢迎下载使用。

    精品解析:浙江省嘉兴市上外秀洲第二次校级中考模拟数学试题:

    这是一份精品解析:浙江省嘉兴市上外秀洲第二次校级中考模拟数学试题,文件包含精品解析浙江省嘉兴市上外秀洲第二次校级中考模拟数学试题解析版docx、精品解析浙江省嘉兴市上外秀洲第二次校级中考模拟数学试题原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map