2021-2022学年浙江省嘉兴市秀洲区中考五模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.对于反比例函数,下列说法不正确的是( )
A.点(﹣2,﹣1)在它的图象上 B.它的图象在第一、三象限
C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小
2.若x是2的相反数,|y|=3,则的值是( )
A.﹣2 B.4 C.2或﹣4 D.﹣2或4
3.下列计算正确的是( )
A. B.0.00002=2×105
C. D.
4.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为( )
A.﹣2 B.4 C.﹣4 D.2
5.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()
A.30° B.40°
C.60° D.70°
6.二元一次方程组的解是( )
A. B. C. D.
7.设α,β是一元二次方程x2+2x-1=0的两个根,则αβ的值是( )
A.2 B.1 C.-2 D.-1
8.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( )
A.右转80° B.左转80° C.右转100° D.左转100°
9.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:
①△AED≌△DFB;②S四边形 BCDG=CG2;③若AF=2DF,则BG=6GF
,其中正确的结论
A.只有①②. B.只有①③. C.只有②③. D.①②③.
10.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为( )
A. B.
C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.已知一组数据,,,,的平均数是,那么这组数据的方差等于________.
12.计算:()0﹣=_____.
13.有一枚质地均匀的骰子,六个面分别表有1到6的点数,任意将它抛掷两次,并将两次朝上面的点数相加,则其和小于6的概率是______.
14.如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按照此做法进行下去,点A8的坐标为__________.
15.________.
16.已知,则=_______.
17.如图,在ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=cm,则EF+CF的长为 cm.
三、解答题(共7小题,满分69分)
18.(10分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA于点E.
(1)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;
(2)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.
19.(5分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.
(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;
(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.
20.(8分)先化简,然后从﹣1,0,2中选一个合适的x的值,代入求值.
21.(10分)计算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.
22.(10分)如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,
(1)求证:CB平分∠ACE;
(2)若BE=3,CE=4,求O的半径.
23.(12分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.求边AC的长;设边BC的垂直平分线与边AB的交点为D,求的值.
24.(14分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y随x的增大而减小,正确,
故选C.
考点:反比例函数
【点睛】
本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化
2、D
【解析】
直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案.
【详解】
解:∵x是1的相反数,|y|=3,
∴x=-1,y=±3,
∴y-x=4或-1.
故选D.
【点睛】
此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键.
3、D
【解析】
在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.
【详解】
解:A、原式= ;故本选项错误;
B、原式=2×10-5;故本选项错误;
C、原式= ;故本选项错误;
D、原式=;故本选项正确;
故选:D.
【点睛】
分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.
4、C
【解析】
试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.
则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,
∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=(tanA)2=2,
又∵S△AOC=×2=1,∴S△OBD=2,∴k=-1.
故选C.
考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.
5、A
【解析】
∵AB∥CD,∠A=70°,
∴∠1=∠A=70°,
∵∠1=∠C+∠E,∠C=40°,
∴∠E=∠1﹣∠C=70°﹣40°=30°.
故选A.
6、B
【解析】
利用加减消元法解二元一次方程组即可得出答案
【详解】
解:①﹣②得到y=2,把y=2代入①得到x=4,
∴,
故选:B.
【点睛】
此题考查了解二元一次方程组,解方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.
7、D
【解析】
试题分析:∵α、β是一元二次方程的两个根,∴αβ==-1,故选D.
考点:根与系数的关系.
8、A
【解析】
60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.
故选A.
9、D
【解析】
解:①∵ABCD为菱形,∴AB=AD.
∵AB=BD,∴△ABD为等边三角形.
∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,
∴△AED≌△DFB;
②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,
即∠BGD+∠BCD=180°,
∴点B、C、D、G四点共圆,
∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.
∴∠BGC=∠DGC=60°.
过点C作CM⊥GB于M,CN⊥GD于N.
∴CM=CN,
则△CBM≌△CDN,(HL)
∴S四边形BCDG=S四边形CMGN.
S四边形CMGN=1S△CMG,
∵∠CGM=60°,
∴GM=CG,CM=CG,
∴S四边形CMGN=1S△CMG=1××CG×CG=CG1.
③过点F作FP∥AE于P点.
∵AF=1FD,
∴FP:AE=DF:DA=1:3,
∵AE=DF,AB=AD,
∴BE=1AE,
∴FP:BE=1:6=FG:BG,
即 BG=6GF.
故选D.
10、A
【解析】
根据题意设未知数,找到等量关系即可解题,见详解.
【详解】
解:设购买甲种奖品x件,乙种奖品y件.依题意,甲、乙两种奖品共20件,即x+y=20, 购买甲、乙两种奖品共花费了650元,即40x+30y=650,
综上方程组为,
故选A.
【点睛】
本题考查了二元一次方程组的列式,属于简单题,找到等量关系是解题关键.
二、填空题(共7小题,每小题3分,满分21分)
11、5.2
【解析】
分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案.
详解:∵平均数为6, ∴(3+4+6+x+9)÷5=6, 解得:x=8,
∴方差为:.
点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.
12、-1
【解析】
本题需要运用零次幂的运算法则、立方根的运算法则进行计算.
【详解】
由分析可得:()0﹣=1-2=﹣1.
【点睛】
熟练运用零次幂的运算法则、立方根的运算法则是本题解题的关键.
13、
【解析】
列举出所有情况,看两个骰子向上的一面的点数和小于6的情况占总情况的多少即可.
【详解】
解:列表得:
两个骰子向上的一面的点数和小于6的有10种,
则其和小于6的概率是,
故答案为:.
【点睛】
本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件树状图法适用于两步或两步以上完成的事件解题时还要注意是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比.
14、(128,0)
【解析】
∵点A1坐标为(1,0),且B1A1⊥x轴,∴B1的横坐标为1,将其横坐标代入直线解析式就可以求出B1的坐标,就可以求出A1B1的值,OA1的值,根据锐角三角函数值就可以求出∠xOB3的度数,从而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3…,从而寻找出点A2、A3…的坐标规律,最后求出A8的坐标.
【详解】
点坐标为(1,0),
轴
点的横坐标为1,且点在直线上
在中由勾股定理,得
,
在中,
.
.
.
.
故答案为 .
【点睛】
本题是一道一次函数的综合试题,也是一道规律试题,考查了直角三角形的性质,特别是所对的直角边等于斜边的一半的运用,点的坐标与函数图象的关系.
15、1
【解析】
先将二次根式化为最简,然后再进行二次根式的乘法运算即可.
【详解】
解:原式=2×=1.
故答案为1.
【点睛】
本题考查了二次根式的乘法运算,属于基础题,掌握运算法则是关键.
16、3
【解析】
依据可设a=3k,b=2k,代入化简即可.
【详解】
∵,
∴可设a=3k,b=2k,
∴=3
故答案为3.
【点睛】
本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.
17、5
【解析】
分析:∵AF是∠BAD的平分线,∴∠BAF=∠FAD.
∵ABCD中,AB∥DC,∴∠FAD =∠AEB.∴∠BAF=∠AEB.
∴△BAE是等腰三角形,即BE=AB=6cm.
同理可证△CFE也是等腰三角形,且△BAE∽△CFE.
∵BC= AD=9cm,∴CE=CF=3cm.∴△BAE和△CFE的相似比是2:1.
∵BG⊥AE, BG=cm,∴由勾股定理得EG=2cm.∴AE=4cm.∴EF=2cm.
∴EF+CF=5cm.
三、解答题(共7小题,满分69分)
18、(1)30°;(2)20°;
【解析】
(1)利用圆切线的性质求解;
(2) 连接OQ,利用圆的切线性质及角之间的关系求解。
【详解】
(1)如图①中,连接OQ.
∵EQ是切线,
∴OQ⊥EQ,
∴∠OQE=90°,
∵OA⊥OB,
∴∠AOB=90°,
∴∠AQB=∠AOB=45°,
∵OB=OQ,
∴∠OBQ=∠OQB=15°,
∴∠AQE=90°﹣15°﹣45°=30°.
(2)如图②中,连接OQ.
∵OB=OQ,
∴∠B=∠OQB=65°,
∴∠BOQ=50°,
∵∠AOB=90°,
∴∠AOQ=40°,
∵OQ=OA,
∴∠OQA=∠OAQ=70°,
∵EQ是切线,
∴∠OQE=90°,
∴∠AQE=90°﹣70°=20°.
【点睛】
此题主要考查圆的切线的性质及圆中集合问题的综合运等.
19、(1)作图见解析;;(2)作图见解析.
【解析】
试题分析:(1)通过数格子可得到点P关于AC的对称点,再直接利用勾股定理可得到周长;(2)利用网格结合矩形的性质以及勾股定理可画出矩形.
试题解析:(1)如图1所示:四边形AQCP即为所求,它的周长为:;(2)如图2所示:四边形ABCD即为所求.
考点:1轴对称;2勾股定理.
20、-.
【解析】
先把分式除法转换成乘法进行约分化简,然后再找出分式的最小公分母通分进行化简求值,在代入求值时要保证每一个分式的分母不能为1
【详解】
解:原式= -
= -
=
=
=- .
当x=-1或者x=1时分式没有意义
所以选择当x=2时,原式=.
【点睛】
分式的化简求值是此题的考点,需要特别注意的是分式的分母不能为1.
21、
【解析】
分析:按照实数的运算顺序进行运算即可.
详解:原式
点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.
22、(1)证明见解析;(2).
【解析】
试题分析:(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.
(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.
(1)证明:如图1,连接OB,
∵AB是⊙0的切线,
∴OB⊥AB,
∵CE丄AB,
∴OB∥CE,
∴∠1=∠3,
∵OB=OC,
∴∠1=∠2,
∴∠2=∠3,
∴CB平分∠ACE;
(2)如图2,连接BD,
∵CE丄AB,
∴∠E=90°,
∴BC===5,
∵CD是⊙O的直径,
∴∠DBC=90°,
∴∠E=∠DBC,
∴△DBC∽△CBE,
∴,
∴BC2=CD•CE,
∴CD==,
∴OC==,
∴⊙O的半径=.
考点:切线的性质.
23、(1)AC=;(2).
【解析】
【分析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;
(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.
【详解】(1)如图,过点A作AE⊥BC,
在Rt△ABE中,tan∠ABC=,AB=5,
∴AE=3,BE=4,
∴CE=BC﹣BE=5﹣4=1,
在Rt△AEC中,根据勾股定理得:AC==;
(2)∵DF垂直平分BC,
∴BD=CD,BF=CF=,
∵tan∠DBF=,
∴DF=,
在Rt△BFD中,根据勾股定理得:BD==,
∴AD=5﹣=,
则.
【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.
24、证明见解析.
【解析】
试题分析:由可得则可证明,因此可得
试题解析:即,在和中,
考点:三角形全等的判定.
2022年浙江省嘉兴市秀洲区中考数学考试模拟冲刺卷含解析: 这是一份2022年浙江省嘉兴市秀洲区中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了下列事件中为必然事件的是,估计﹣1的值为,如果将直线l1,如图,已知,,则的度数为等内容,欢迎下载使用。
2022年浙江省嘉兴市秀洲区中考数学最后冲刺模拟试卷含解析: 这是一份2022年浙江省嘉兴市秀洲区中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了近似数精确到,下列运算正确的是,如图所示的几何体的俯视图是等内容,欢迎下载使用。
2022届浙江省嘉兴市秀洲区、经开区七校联考中考联考数学试题含解析: 这是一份2022届浙江省嘉兴市秀洲区、经开区七校联考中考联考数学试题含解析,共18页。试卷主要包含了答题时请按要求用笔,若a与5互为倒数,则a=,下列计算正确的是等内容,欢迎下载使用。