|试卷下载
搜索
    上传资料 赚现金
    浙江省杭州西湖区四校联考2022年中考数学模试卷含解析
    立即下载
    加入资料篮
    浙江省杭州西湖区四校联考2022年中考数学模试卷含解析01
    浙江省杭州西湖区四校联考2022年中考数学模试卷含解析02
    浙江省杭州西湖区四校联考2022年中考数学模试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省杭州西湖区四校联考2022年中考数学模试卷含解析

    展开
    这是一份浙江省杭州西湖区四校联考2022年中考数学模试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是,在实数,有理数有,若点A,下列说法不正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列现象,能说明“线动成面”的是(  )
    A.天空划过一道流星
    B.汽车雨刷在挡风玻璃上刷出的痕迹
    C.抛出一块小石子,石子在空中飞行的路线
    D.旋转一扇门,门在空中运动的痕迹
    2.反比例函数是y=的图象在(  )
    A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限
    3.如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE为半径作扇形EAB,π取3,则阴影部分的面积为(  )

    A.﹣4 B.7﹣4 C.6﹣ D.
    4.下列计算正确的是( )
    A.2x﹣x=1 B.x2•x3=x6
    C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y6
    5.在实数,有理数有( )
    A.1个 B.2个 C.3个 D.4个
    6.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是(   )

    A.3 B.﹣3 C.6 D.﹣6
    7.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是(  )
    A.﹣5 B.﹣3 C.3 D.1
    8.如图,点A,B,C在⊙O上,∠ACB=30°,⊙O的半径为6,则的长等于(  )

    A.π B.2π C.3π D.4π
    9.下列说法不正确的是( )
    A.选举中,人们通常最关心的数据是众数
    B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大
    C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
    D.数据3,5,4,1,﹣2的中位数是4
    10.下列计算正确的是(  )
    A.a4+a5=a9 B.(2a2b3)2=4a4b6
    C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b2
    11.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为(  )

    A. B. C. D.
    12.一元二次方程2x2﹣3x+1=0的根的情况是(  )
    A.有两个相等的实数根 B.有两个不相等的实数根
    C.只有一个实数根 D.没有实数根
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若am=2,an=3,则am + 2n =______.
    14.如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上.若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_______.

    15.因式分解:=_______________.
    16.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为_______.

    17.如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°得到△BDE,△ABC的面积=_____cm1.

    18.已知,如图,△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,则AC= .

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
    请结合图表完成下列各题:
    (1)①表中a的值为 ,中位数在第 组;
    ②频数分布直方图补充完整;
    (2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
    (3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
    组别
    成绩x分
    频数(人数)
    第1组
    50≤x<60
    6
    第2组
    60≤x<70
    8
    第3组
    70≤x<80
    14
    第4组
    80≤x<90
    a
    第5组
    90≤x<100
    10

    20.(6分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:
    x/元

    15
    20
    25

    y/件

    25
    20
    15

    已知日销售量y是销售价x的一次函数.求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?
    21.(6分)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)

    22.(8分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.

    根据以上信息,解答下列问题:
    (1)这次调查一共抽取了 名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是 ;
    (2)请将条形统计图补充完整;
    (3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有 名.
    23.(8分)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣4,0),B (1,0)两点,与y轴交于点C.
    (1)求这个二次函数的解析式;
    (2)连接AC、BC,判断△ABC的形状,并证明;
    (3)若点P为二次函数对称轴上点,求出使△PBC周长最小时,点P的坐标.

    24.(10分)计算:﹣16+(﹣)﹣2﹣|﹣2|+2tan60°
    25.(10分)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,线段BC与抛物线的对称轴交于点E、P为线段BC上的一点(不与点B、C重合),过点P作PF∥y轴交抛物线于点F,连结DF.设点P的横坐标为m.
    (1)求此抛物线所对应的函数表达式.
    (2)求PF的长度,用含m的代数式表示.
    (3)当四边形PEDF为平行四边形时,求m的值.

    26.(12分)计算:()-1+()0+-2cos30°.
    27.(12分)某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
    月份x
    1
    2
    3
    4
    5
    6
    7
    8
    9
    价格y1(元/件)
    560
    580
    600
    620
    640
    660
    680
    700
    720
    随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
    (1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
    (2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;
    【详解】
    解:∵A、天空划过一道流星说明“点动成线”,
    ∴故本选项错误.
    ∵B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,
    ∴故本选项正确.
    ∵C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,
    ∴故本选项错误.
    ∵D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,
    ∴故本选项错误.
    故选B.
    【点睛】
    本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体.
    2、B
    【解析】
    解:∵反比例函数是y=中,k=2>0,
    ∴此函数图象的两个分支分别位于一、三象限.
    故选B.
    3、A
    【解析】
    ∵O的直径AB=2,
    ∴∠C=90°,
    ∵C是弧AB的中点,
    ∴,
    ∴AC=BC,
    ∴∠CAB=∠CBA=45°,
    ∵AE,BE分别平分∠BAC和∠ABC,
    ∴∠EAB=∠EBA=22.5°,
    ∴∠AEB=180°− (∠BAC+∠CBA)=135°,
    连接EO,

    ∵∠EAB=∠EBA,
    ∴EA=EB,
    ∵OA=OB,
    ∴EO⊥AB,
    ∴EO为Rt△ABC内切圆半径,
    ∴S△ABC=(AB+AC+BC)⋅EO=AC⋅BC,
    ∴EO=−1,
    ∴AE2=AO2+EO2=12+(−1)2=4−2,
    ∴扇形EAB的面积==,△ABE的面积=AB⋅EO=−1,
    ∴弓形AB的面积=扇形EAB的面积−△ABE的面积=,
    ∴阴影部分的面积=O的面积−弓形AB的面积=−()=−4,
    故选:A.
    4、D
    【解析】
    根据合并同类项的法则,积的乘方,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.
    【详解】
    解:A、2x-x=x,错误;
    B、x2•x3=x5,错误;
    C、(m-n)2=m2-2mn+n2,错误;
    D、(-xy3)2=x2y6,正确;
    故选D.
    【点睛】
    考查了整式的运算能力,对于相关的整式运算法则要求学生很熟练,才能正确求出结果.
    5、D
    【解析】
    试题分析:根据有理数是有限小数或无限循环小数,可得答案:
    是有理数,故选D.
    考点:有理数.
    6、D
    【解析】
    试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D.

    考点:反比例函数系数k的几何意义.
    7、D
    【解析】【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.
    【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,
    ∴1+m=3、1﹣n=2,
    解得:m=2、n=﹣1,
    所以m+n=2﹣1=1,
    故选D.
    【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.
    8、B
    【解析】
    根据圆周角得出∠AOB=60°,进而利用弧长公式解答即可.
    【详解】
    解:∵∠ACB=30°,
    ∴∠AOB=60°,
    ∴的长==2π,
    故选B.
    【点睛】
    此题考查弧长的计算,关键是根据圆周角得出∠AOB=60°.
    9、D
    【解析】
    试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;
    B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;
    C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;
    D、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D选项的说法错误.
    故选D.
    考点:随机事件发生的可能性(概率)的计算方法
    10、B
    【解析】分析:根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.
    详解:A、a4与a5不是同类项,不能合并,故本选项错误;
    B、(2a2b3)2=4a4b6,故本选项正确;
    C、-2a(a+3)=-2a2-6a,故本选项错误;
    D、(2a-b)2=4a2-4ab+b2,故本选项错误;
    故选:B.
    点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.
    11、D
    【解析】
    连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.
    【详解】
    解:连接BD,BE,BO,EO,

    ∵B,E是半圆弧的三等分点,
    ∴∠EOA=∠EOB=∠BOD=60°,
    ∴∠BAD=∠EBA=30°,
    ∴BE∥AD,
    ∵ 的长为 ,

    解得:R=4,
    ∴AB=ADcos30°= ,
    ∴BC=AB=,
    ∴AC=BC=6,
    ∴S△ABC=×BC×AC=××6=,
    ∵△BOE和△ABE同底等高,
    ∴△BOE和△ABE面积相等,
    ∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=
    故选:D.
    【点睛】
    本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.
    12、B
    【解析】
    试题分析:对于一元二次方程,当△=时方程有两个不相等的实数根,当△=时方程有两个相等的实数根,当△=时方程没有实数根.根据题意可得:△=,则方程有两个不相等的实数根.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、18
    【解析】
    运用幂的乘方和积的乘方的运算法则求解即可.
    【详解】
    解:∵am=2,an=3,
    ∴a3m+2n=(am)3×(an)2=23×32=1.
    故答案为1.
    【点睛】
    本题考查了幂的乘方和积的乘方,掌握运算法则是解答本题的关键.
    14、
    【解析】
    根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积.
    【详解】
    抛物线的对称轴为x=-.
    ∵抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BC∥x轴,
    ∴点C的横坐标为-1.
    ∵四边形ABCD为菱形,
    ∴AB=BC=AD=1,
    ∴点D的坐标为(-2,0),OA=2.
    在Rt△ABC中,AB=1,OA=2,
    ∴OB==4,
    ∴S菱形ABCD=AD•OB=1×4=3.
    故答案为3.
    【点睛】
    本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键.
    15、a(a+b)(a-b).
    【解析】
    分析:本题考查的是提公因式法和利用平方差公式分解因式.
    解析:原式= a(a+b)(a-b).
    故答案为a(a+b)(a-b).
    16、(3,2).
    【解析】
    过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.
    【详解】
    过点P作PD⊥x轴于点D,连接OP,

    ∵A(6,0),PD⊥OA,
    ∴OD=OA=3,
    在Rt△OPD中 ∵OP= OD=3,
    ∴PD=2
    ∴P(3,2) .
    故答案为(3,2).
    【点睛】
    本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    17、18
    【解析】
    三角形的重心是三条中线的交点,根据中线的性质,S△ACD=S△BCD;再利用勾股定理逆定理证明BG⊥CE,从而得出△BCD的高,可求△BCD的面积.
    【详解】
    ∵点G是△ABC的重心,

    ∵GB=3,EG=GC=4,BE=GA=5,
    ∴,即BG⊥CE,
    ∵CD为△ABC的中线,


    故答案为:18.
    【点睛】
    考查三角形重心的性质,中线的性质,旋转的性质,勾股定理逆定理等,综合性比较强,对学生要求较高.
    18、1
    【解析】
    试题分析:根据DE∥FG∥BC可得△ADE∽△AFG∽ABC,根据题意可得EG:AC=DF:AB=2:6=1:3,根据EG=3,则AC=1.
    考点:三角形相似的应用.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)①12,3. ②详见解析.(2).
    【解析】
    分析:(1)①根据题意和表中的数据可以求得a的值;②由表格中的数据可以将频数分布表补充完整;
    (2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;
    (3)根据题意可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率.
    详解:(1)①a=50﹣(6+8+14+10)=12,
    中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,
    所以中位数落在第3组,
    故答案为12,3;
    ②如图,

    (2)×100%=44%,
    答:本次测试的优秀率是44%;
    (3)设小明和小强分别为A、B,另外两名学生为:C、D,
    则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).
    所以小明和小强分在一起的概率为:.
    点睛:本题考查列举法求概率、频数分布表、频数分布直方图、中位数,解题的关键是明确题意,找出所求问题需要的条件,可以将所有的可能性都写出来,求出相应的概率.
    20、();()此时每天利润为元.
    【解析】
    试题分析:(1) 根据题意用待定系数法即可得解;
    (2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.
    试题解析:()设,将,和,代入,得:,解得:,
    ∴;
    ()将代入()中函数表达式得:

    ∴利润(元),
    答:此时每天利润为元.
    21、建筑物AB的高度约为5.9米
    【解析】
    在△CED中,得出DE,在△CFD中,得出DF,进而得出EF,列出方程即可得出建筑物AB的高度;
    【详解】
    在Rt△CED中,∠CED=58°,
    ∵tan58°=,
    ∴DE= ,
    在Rt△CFD中,∠CFD=22°,
    ∵tan22°= ,
    ∴DF= ,
    ∴EF=DF﹣DE=-,
    同理:EF=BE﹣BF= ,
    ∴=-,
    解得:AB≈5.9(米),
    答:建筑物AB的高度约为5.9米.
    【点睛】
    考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.
    22、(1)120,30%;(2)作图见解析;(3)1.
    【解析】
    试题分析:(1)用安全意识分“一般”的人数除以安全意识分“一般”的人数所占的百分比即可得这次调查一共抽取的学生人数;用安全意识分“很强”的人数除以这次调查一共抽取的学生人数即可得安全意识“很强”的学生占被调查学生总数的百分比;(2)用这次调查一共抽取的学生人数乘以安全意识分“较强”的人数所占的百分比即可得安全意识分“较强”的人数,在条形统计图上画出即可;(3)用总人数乘以安全意识为“淡薄”、 “一般”的学生一共所占的百分比即可得全校需要强化安全教育的学生的人数.
    试题解析:(1) 12÷15%=120人;36÷120=30%;
    (2)120×45%=54人,补全统计图如下:

    (3)1800×=1人.
    考点:条形统计图;扇形统计图;用样本估计总体.
    23、(1)抛物线解析式为y=﹣x2﹣x+2;(2)△ABC为直角三角形,理由见解析;(3)当P点坐标为(﹣,)时,△PBC周长最小
    【解析】
    (1)设交点式y=a(x+4)(x-1),展开得到-4a=2,然后求出a即可得到抛物线解析式;
    (2)先利用两点间的距离公式计算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判断△ABC为直角三角形;
    (3)抛物线的对称轴为直线x=-,连接AC交直线x=-于P点,如图,利用两点之间线段最短得到PB+PC的值最小,则△PBC周长最小,接着利用待定系数法求出直线AC的解析式为y=x+2,然后进行自变量为-所对应的函数值即可得到P点坐标.
    【详解】
    (1)抛物线的解析式为y=a(x+4)(x﹣1),
    即y=ax2+3ax﹣4a,
    ∴﹣4a=2,解得a=﹣,
    ∴抛物线解析式为y=﹣x2﹣x+2;
    (2)△ABC为直角三角形.理由如下:
    当x=0时,y=﹣x2﹣x+2=2,则C(0,2),
    ∵A(﹣4,0),B (1,0),
    ∴AC2=42+22,BC2=12+22,AB2=52=25,
    ∴AC2+BC2=AB2,
    ∴△ABC为直角三角形,∠ACB=90°;
    (3)
    抛物线的对称轴为直线x=﹣,
    连接AC交直线x=﹣于P点,如图,
    ∵PA=PB,
    ∴PB+PC=PA+PC=AC,
    ∴此时PB+PC的值最小,△PBC周长最小,
    设直线AC的解析式为y=kx+m,
    把A(﹣4,0),C(0,2)代入得,解得,
    ∴直线AC的解析式为y=x+2,
    当x=﹣时,y=x+2=,则P(﹣,)
    ∴当P点坐标为(﹣,)时,△PBC周长最小.
    【点睛】
    本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解.关于x的一元二次方程即可求得交点横坐标.也考查了待定系数法求二次函数解析式和最短路径问题.
    24、1+3.
    【解析】
    先根据乘方、负指数幂、绝对值、特殊角的三角函数值分别进行计算,然后根据实数的运算法则求得计算结果.
    【详解】
    ﹣16+(﹣)﹣2﹣|﹣2|+2tan60°
    =﹣1+4﹣(2﹣)+2,
    =﹣1+4﹣2++2,
    =1+3.
    【点睛】
    本题主要考查了实数的综合运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算法则.
    25、(1)y=-x2+2x+1;(2)-m2+1m.(1)2.
    【解析】
    (1)根据待定系数法,可得函数解析式;
    (2)根据自变量与函数值的对应关系,可得C点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得答案;
    (1)根据自变量与函数值的对应关系,可得F点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得DE的长,根据平行四边形的对边相等,可得关于m的方程,根据解方程,可得m的值.
    【详解】
    解:(1)∵点A(-1,0),点B(1,0)在抛物线y=-x2+bx+c上,
    ∴,解得,
    此抛物线所对应的函数表达式y=-x2+2x+1;
    (2)∵此抛物线所对应的函数表达式y=-x2+2x+1,
    ∴C(0,1).
    设BC所在的直线的函数解析式为y=kx+b,将B、C点的坐标代入函数解析式,得
    ,解得,
    即BC的函数解析式为y=-x+1.
    由P在BC上,F在抛物线上,得
    P(m,-m+1),F(m,-m2+2m+1).
    PF=-m2+2m+1-(-m+1)=-m2+1m.
    (1)如图

    ∵此抛物线所对应的函数表达式y=-x2+2x+1,
    ∴D(1,4).
    ∵线段BC与抛物线的对称轴交于点E,
    当x=1时,y=-x+1=2,
    ∴E(1,2),
    ∴DE=4-2=2.
    由四边形PEDF为平行四边形,得
    PF=DE,即-m2+1m=2,
    解得m1=1,m2=2.
    当m=1时,线段PF与DE重合,m=1(不符合题意,舍).
    当m=2时,四边形PEDF为平行四边形.
    考点:二次函数综合题.
    26、4+2.
    【解析】
    原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.
    【详解】
    原式=3+1+3-2×
    =4+2.
    27、(1)y1=20x+540,y2=10x+1;(2)去年4月销售该配件的利润最大,最大利润为450万元.
    【解析】
    (1)利用待定系数法,结合图象上点的坐标求出一次函数解析式即可;
    (2)根据生产每件配件的人力成本为50元,其它成本30元,以及售价销量进而求出最大利润.
    【详解】
    (1)利用表格得出函数关系是一次函数关系:
    设y1=kx+b,

    解得:
    ∴y1=20x+540,
    利用图象得出函数关系是一次函数关系:
    设y2=ax+c,

    解得:
    ∴y2=10x+1.
    (2)去年1至9月时,销售该配件的利润w=p1(1000﹣50﹣30﹣y1),
    =(0.1x+1.1)(1000﹣50﹣30﹣20x﹣540)=﹣2x2+16x+418,
    =﹣2( x﹣4)2+450,(1≤x≤9,且x取整数)
    ∵﹣2<0,1≤x≤9,∴当x=4时,w最大=450(万元);
    去年10至12月时,销售该配件的利润w=p2(1000﹣50﹣30﹣y2)
    =(﹣0.1x+2.9)(1000﹣50﹣30﹣10x﹣1),
    =( x﹣29)2,(10≤x≤12,且x取整数),
    ∵10≤x≤12时,∴当x=10时,w最大=361(万元),
    ∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.
    【点睛】
    此题主要考查了一次函数的应用,根据已知得出函数关系式以及利用函数增减性得出函数最值是解题关键.

    相关试卷

    2024年浙江省杭州市西湖区中考数学三模试卷: 这是一份2024年浙江省杭州市西湖区中考数学三模试卷,共25页。

    2023年浙江省杭州市西湖区之江实验中学中考数学二模试卷(含解析): 这是一份2023年浙江省杭州市西湖区之江实验中学中考数学二模试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年浙江省杭州市西湖区紫金港中学中考数学二模试卷(含解析): 这是一份2023年浙江省杭州市西湖区紫金港中学中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map