所属成套资源:23版新高考一轮分层练案【解析版】
23版新高考一轮分层练案(三十八) 直线、平面平行的判定与性质
展开
这是一份23版新高考一轮分层练案(三十八) 直线、平面平行的判定与性质,共7页。试卷主要包含了下列命题中正确的是,下列四个命题中正确的是等内容,欢迎下载使用。
一轮分层练案(三十八) 直线、平面平行的判定与性质 A级——基础达标1.下列命题中正确的是( )A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α【答案】D A中,a可以在过b的平面内;B中,a与α内的直线也可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知b∥α,正确.2.如图所示的三棱柱ABCA1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是( )A.异面 B.平行C.相交 D.以上均有可能【答案】B 在三棱柱ABCA1B1C1中,AB∥A1B1.∵AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC.∵过A1B1的平面与平面ABC交于DE,∴DE∥A1B1,∴DE∥AB.3.设m,n是两条不同的直线,α,β是两个不同的平面,且m⊂α,n⊂α,则“α∥β ”是“m∥β且n∥β ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A m,n是两条不同的直线,α,β是两个不同的平面,且m⊂α,n⊂α,则“α∥β ”得“m∥β且n∥β ”,根据面面平行的判定定理得“m∥β且n∥β ”不能得“α∥β ”,所以“α∥β ”是“m∥β且n∥β ”的充分不必要条件.故选A.4.如图所示,正方体ABCDA1B1C1D1中,点E,F,G,P,Q分别为棱AB,C1D1,D1A1,D1D,C1C的中点.则下列叙述中正确的是( )A.直线BQ∥平面EFGB.直线A1B∥平面EFGC.平面APC∥平面EFGD.平面A1BQ∥平面EFG【答案】B 过点E,F,G的截面如图所示(H,I分别为AA1,BC的中点),连接A1B,BQ,AP,PC,易知BQ与平面EFG相交于点Q,故A错误;∵A1B∥HE,A1B⊄平面EFG,HE⊂平面EFG,∴A1B∥平面EFG.故B正确;AP⊂平面ADD1A1,HG⊂平面ADD1A1,延长HG与PA必相交,故C错误;易知平面A1BQ与平面EFG有交点Q,故D错误,故选B.5.(多选)下面四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形是( )【答案】AD A.如图①,连接BC,可得BC∥MN,AC∥NP,从而得AC∥平面MNP,BC∥平面MNP,又AC∩CB=C,∴平面ABC∥平面MNP,∴AB∥平面MNP;B.如图②,连接BC交MP于点O,连接ON,易知在底面正方形中O不是BC中点(实际上是四等分点中靠近C的一个),而N是AC中点,因此AB与ON不平行,在平面ABC内,AB与ON必相交,此交点也是直线AB与平面MNP的公共点,直线AB与平面MNP相交而不平行;C.如图③,连接BN,在正方体中有PN∥BM,因此B在平面MNP内,直线AB与平面MNP相交而不平行;D.如图④,连接CD,可得AB∥CD,CD∥NP,即AB∥NP,直线AB与平面MNP平行,故选A、D.6.(多选)下列四个命题中正确的是( )A.如果一条直线不在某个平面内,那么这条直线就与这个平面平行B.过直线外一点有无数个平面与这条直线平行C.过平面外一点有无数条直线与这个平面平行D.过空间一点必存在某个平面与两条异面直线都平行【答案】BC A.如果一条直线不在某个平面内,那么这条直线就与这个平面平行或相交,故A错误;B.过直线外一点有且只有一条直线和已知直线平行,过这条直线有无数个平面与已知直线平行,故B正确;C.过平面外一点有无数条直线与这个平面平行,且这无数条直线在同一平面内,故C正确;D.过空间一点不一定存在某个平面与两条异面直线都平行,当此点在其中一条直线上时平面最多只能与另一条直线平行,故D错误.故选B、C.7.(多选)如图,正方体ABCDA1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是( )A.当0<CQ<时,S为四边形B.当CQ=时,S为等腰梯形C.当CQ=时,S与C1D1的交点R满足C1R=D.当<CQ<1时,S为六边形【答案】ABC 连接PQ,AP.对于A,当0<CQ<时,如图①.在平面AA1D1D内,过点A作AE∥PQ,交DD1于点E,连接EQ,则S是四边形APQE.对于B,当CQ=时,如图②.连接D1Q,D1A,BC1,显然PQ∥BC1,AP=D1Q,因为BC1∥AD1,所以PQ∥AD1,所以S是等腰梯形.对于C,当CQ=时,如图③.过点B作BF∥PQ交线段CC1的延长线于点F,则C1F=.过点A作AE∥BF交线段DD1的延长线于点E,则D1E=,所以AE∥PQ,连接EQ交C1D1于点R,易知Rt△RC1Q∽Rt△RD1E,则C1Q∶D1E=C1R∶RD1=1∶2,故C1R=.对于D,当<CQ<1时,由C易知S为五边形.8.如图,在正方体ABCD A1B1C1D1中,AB=2,E为AD的中点,点F在CD上,若EF∥平面AB1C,则EF=________.解析:根据题意,因为EF∥平面AB1C,所以EF∥AC.又E是AD的中点,所以F是CD的中点.因此在Rt△DEF中,DE=DF=1,故EF=.【答案】9.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________(填序号).解析:由面面平行的性质定理可知,①正确;当m∥γ,n∥β时,n和m可能平行或异面,②错误;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以m∥n,③正确.【答案】①或③10.如图,在三棱柱ABCA1B1C1中,点D为AC的中点,点D1是A1C1上的一点.(1)当等于何值时,BC1∥平面AB1D1?(2)当BC1∥平面AB1D1时,求证:平面BC1D∥平面AB1D1.解:(1)当=1时,BC1∥平面AB1D1.如图,此时D1为线段A1C1的中点,连接A1B交AB1于点O,连接OD1.由棱柱的定义知四边形A1ABB1为平行四边形,∴点O为A1B的中点.在△A1BC1中,点O,D1分别为A1B,A1C1的中点,∴OD1∥BC1.又OD1⊂平面AB1D1,BC1⊄平面AB1D1,∴BC1∥平面AB1D1.故当=1时,BC1∥平面AB1D1.(2)证明:由(1)知,当BC1∥平面AB1D1时,点D1是线段A1C1的中点,则有AD∥D1C1,且AD=D1C1,∴四边形ADC1D1是平行四边形.∴AD1∥DC1.又DC1⊄平面AB1D1,AD1⊂平面AB1D1,∴DC1∥平面AB1D1.又BC1∥平面AB1D1,BC1⊂平面BC1D,DC1⊂平面BC1D,DC1∩BC1=C1,∴平面BC1D∥平面AB1D1.B级——综合应用11.已知P为△ABC所在平面外一点,平面α∥平面ABC,且α交线段PA,PB,PC于点A′,B′,C′,若PA′∶AA′=2∶3,则S△A′B′C′∶S△ABC=( )A.2∶3 B.2∶5C.4∶9 D.4∶25【答案】D ∵平面α∥平面ABC,∴A′C′∥AC,A′B′∥AB,B′C′∥BC,∴S△A′B′C′∶S△ABC=(PA′∶PA)2,又PA′∶AA′=2∶3,∴PA′∶PA=2∶5,∴S△A′B′C′∶S△ABC=4∶25.故选D.12.(多选)已知正四棱柱ABCDA1B1C1D1的底面边长为2,侧棱AA1=1,P为上底面A1B1C1D1上的动点,给出下列四个结论中正确结论为( )A.若PD=3,则满足条件的P点有且只有一个B.若PD=,则点P的轨迹是一段圆弧C.若PD∥平面ACB1,则DP长的最小值为2D.若PD∥平面ACB1,且PD=,则平面BDP截正四棱柱ABCDA1B1C1D1的外接球所得平面图形的面积为 【答案】ABD 如图:∵正四棱柱ABCDA1B1C1D1的底面边长为2,∴B1D1=2,又侧棱AA1=1,∴DB1==3,则P与B1重合时PD=3,此时P点唯一,故A正确;∵PD=∈(1,3),DD1=1,则PD1=,即点P的轨迹是一段圆弧,故B正确;连接DA1,DC1,可得平面A1DC1∥平面ACB1,则当P为A1C1中点时,DP有最小值为=,故C错误;由C知,平面BDP即为平面BDD1B1,平面BDP截正四棱柱ABCDA1B1C1D1的外接球所得平面图形为外接球的大圆,其半径为 =,面积为,故D正确.故选A、B、D.13.如图所示,在正四棱柱ABCDA1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)解析:连接HN,FH,FN(图略),则FH∥DD1,HN∥BD,又FH∩HN=H,∴平面FHN∥平面B1BDD1,只需M∈FH,则MN⊂平面FHN,∴MN∥平面B1BDD1.【答案】点M在线段FH上(或点M与点H重合)14.如图,M是正方体ABCDA1B1C1D1的棱DD1的中点,给出下列命题:①过M点有且只有一条直线与直线AB,B1C1都相交;②过M点有且只有一个平面与直线AB,B1C1都相交;③过M点有且只有一个平面与直线AB,B1C1都平行.其中真命题的序号为________.解析:①假设有两条直线m,n与直线AB,B1C1都相交,则此两条相交直线m,n确定平面α,并且直线AB,B1C1均在此面内,与直线AB,B1C1是异面直线矛盾,故①正确.②过M点与对角面AA1C1C平行的平面与AB,B1C1均相交,旋转该面仍可能与AB,B1C1均相交,故②不正确.③过M点有且只有一个平面与直线AB,B1C1都平行.此平面为过M点且与两个底面平行的平面,故③正确.【答案】①③15.如图,在矩形ABCD和矩形ABEF中,AF=AD,AM=DN,矩形ABEF可沿AB任意翻折.(1)求证:当点F,A,D不共线时,线段MN总平行于平面FAD;(2)“不管怎样翻折矩形ABEF,线段MN总与线段FD平行”这个结论正确吗?如果正确,请证明;如果不正确,请说明能否改变个别已知条件使上述结论成立,并给出理由.解:(1)证明:在平面图形中,连接MN(图略),设MN与AB交于点G.∵四边形ABCD和四边形ABEF都是矩形,AD=AF,∴AD∥BE且AD=BE,∴四边形ADBE是平行四边形,∴AE∥DB.又AM=DN,∴四边形ADNM是平行四边形,∴MN∥AD.当点F,A,D不共线时,如图,MG∥AF,NG∥AD.又MG∩NG=G,AD∩AF=A,∴平面GNM∥平面ADF.又MN⊂平面GNM,∴MN∥平面ADF.故当点F,A,D不共线时,线段MN总平行于平面FAD.(2)这个结论不正确.要使上述结论成立,M,N应分别为AE和DB的中点.理由如下:当点F,A,D共线时,如题图,易证得MN∥FD.当点F,A,D不共线时,由(1)知平面MNG∥平面FDA,则要使MN∥FD总成立,根据面面平行的性质定理,只要FD与MN共面即可.若要使FD与MN共面,连接FM,只要FM与DN相交即可.∵FM⊂平面ABEF,DN⊂平面ABCD,平面ABEF∩平面ABCD=AB,∴若FM与DN相交,则交点只能为点B,此时只有M,N分别为AE,DB的中点才满足.由FM∩DN=B,可知它们确定一个平面,即F,D,N,M四点共面.∵平面FDNM∩平面MNG=MN,平面FDNM∩平面FDA=FD,平面MNG∥平面FDA,∴MN∥FD.C级——迁移创新16.如图所示,平面α∥平面β,点A∈α,点C∈α,点B∈β,点D∈β,点E,F分别在线段AB,CD上,且AE∶EB=CF∶FD.(1)求证:EF∥平面β;(2)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,求EF的长.解:(1)证明:①当AB,CD在同一平面内时,由平面α∥平面β,平面α∩平面ABDC=AC,平面β∩平面ABDC=BD知,AC∥BD.∵AE∶EB=CF∶FD,∴EF∥BD.又EF⊄β,BD⊂β,∴EF∥平面β.②当AB与CD异面时,如图所示,设平面ACD∩平面β=HD,且HD=AC,∵平面α∥平面β,平面α∩平面ACDH=AC,∴AC∥HD,∴四边形ACDH是平行四边形.在AH上取一点G,使AG∶GH=CF∶FD,连接EG,FG,BH.∵AE∶EB=CF∶FD=AG∶GH,∴GF∥HD,EG∥BH.又EG∩GF=G,BH∩HD=H,∴平面EFG∥平面β.又EF⊂平面EFG,∴EF∥平面β.综合①②可知,EF∥平面β.(2)如图所示,连接AD,取AD的中点M,连接ME,MF.∵E,F分别是AB,CD的中点,∴ME∥BD,MF∥AC,且ME=BD=3,MF=AC=2.∴∠EMF为AC与BD所成的角或其补角,∴∠EMF=60°或120°.∴在△EFM中,由余弦定理得EF== =,即EF=或EF=.
相关试卷
这是一份高考数学一轮复习 专题8.4 直线、平面平行的判定及性质(练),文件包含专题84直线平面平行的判定及性质练教师版docx、专题84直线平面平行的判定及性质练学生版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
这是一份高考数学一轮复习 专题8.4 直线、平面平行的判定及性质(讲),文件包含专题84直线平面平行的判定及性质讲教师版docx、专题84直线平面平行的判定及性质讲学生版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
这是一份高中数学高考4 第4讲 直线、平面平行的判定与性质 新题培优练,共8页。