2021-2022学年云南曲靖市沾益区大坡乡市级名校十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=( )
A. B. C. D.
2.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是( )
A. B.2 C. D.
3.计算﹣8+3的结果是( )
A.﹣11 B.﹣5 C.5 D.11
4.估算的运算结果应在( )
A.2到3之间 B.3到4之间
C.4到5之间 D.5到6之间
5. (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )
A.2 B. C.5 D.
6.下列运算正确的是( )
A.(a﹣3)2=a2﹣9 B.()﹣1=2 C.x+y=xy D.x6÷x2=x3
7.下列图形中,是轴对称图形的是( )
A. B. C. D.
8.直线AB、CD相交于点O,射线OM平分∠AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是( )
A.相离 B.相切 C.相交 D.不确定
9.如图是测量一物体体积的过程:
步骤一:将180 mL的水装进一个容量为300 mL的杯子中;
步骤二:将三个相同的玻璃球放入水中,结果水没有满;
步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.
根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)( ).
A.10 cm3以上,20 cm3以下 B.20 cm3以上,30 cm3以下
C.30 cm3以上,40 cm3以下 D.40 cm3以上,50 cm3以下
10.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一个,周二个,周三个,周四个,周五个则小丽这周跳绳个数的中位数和众数分别是
A.180个,160个 B.170个,160个
C.170个,180个 D.160个,200个
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择__________.
A、按照小明的要求搭几何体,小亮至少需要__________个正方体积木.
B、按照小明的要求,小亮所搭几何体的表面积最小为__________.
12.计算:×(﹣2)=___________.
13.函数y=的自变量x的取值范围为____________.
14.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为 .
15.一组数据4,3,5,x,4,5的众数和中位数都是4,则x=_____.
16.计算=_____.
三、解答题(共8题,共72分)
17.(8分)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.
(1)求抛物线的解析式;
(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积最大,若存在,求出点F的坐标和最大值;若不存在,请说明理由;
(3)平行于DE的一条动直线l与直线BC相较于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求P点的坐标.
18.(8分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:求被调查的学生人数;补全条形统计图;已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?
19.(8分)某楼盘2018年2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4 月份下调到每平方米6075元的均价开盘销售.
(1)求3、4两月平均每月下调的百分率;
(2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?
(3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说明理由.
20.(8分)如图,△ABC内接于⊙O,CD是⊙O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且∠B=2∠P.
(1)求证:PA是⊙O的切线;
(2)若PD=,求⊙O的直径;
(3)在(2)的条件下,若点B等分半圆CD,求DE的长.
21.(8分)在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,连接BP,DQ.
(1)依题意补全图 1;
(2)①连接 DP,若点 P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;
②若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: .
22.(10分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且AE=CF,连接AF、CE交于点G,求证:点G在BD上.
23.(12分)艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4 个班 (用A,B,C,D表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图.请 根据相关信息,回答下列问题:
(1)请你将条形统计图补充完整;并估计全校共征集了_____件作品;
(2)如果全校征集的作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率.
24.化简,再求值:
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据等腰三角形两底角相等用α表示出∠A2B2O,依此类推即可得到结论.
【详解】
∵B1A2=B1B2,∠A1B1O=α,
∴∠A2B2O=α,
同理∠A3B3O=×α=α,
∠A4B4O=α,
∴∠AnBnO=α,
∴∠A10B10O=,
故选B.
【点睛】
本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.
2、A
【解析】
分析:连接AC,根据勾股定理求出AC、BC、AB的长,根据勾股定理的逆定理得到△ABC是直角三角形,根据正切的定义计算即可.
详解:
连接AC,
由网格特点和勾股定理可知,
AC=,
AC2+AB2=10,BC2=10,
∴AC2+AB2=BC2,
∴△ABC是直角三角形,
∴tan∠ABC=.
点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.
3、B
【解析】
绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.依此即可求解.
【详解】
解:−8+3=−2.
故选B.
【点睛】
考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.
4、D
【解析】
解:= ,∵2<<3,∴在5到6之间.
故选D.
【点睛】
此题主要考查了估算无理数的大小,正确进行计算是解题关键.
5、B
【解析】
根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.
【详解】
根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.
故选B
【点睛】
本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.
6、B
【解析】
分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.
详解:A. (a﹣3)2=a2﹣6a+9,故该选项错误;
B. ()﹣1=2,故该选项正确;
C.x与y不是同类项,不能合并,故该选项错误;
D. x6÷x2=x6-2=x4,故该选项错误.
故选B.
点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.
7、B
【解析】
分析:根据轴对称图形的概念求解.
详解:A、不是轴对称图形,故此选项不合题意;
B、是轴对称图形,故此选项符合题意;
C、不是轴对称图形,故此选项不合题意;
D、不是轴对称图形,故此选项不合题意;
故选B.
点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.
8、A
【解析】
根据角平分线的性质和点与直线的位置关系解答即可.
【详解】
解:如图所示;
∵OM平分∠AOD,以点P为圆心的圆与直线AB相离,
∴以点P为圆心的圆与直线CD相离,
故选:A.
【点睛】
此题考查直线与圆的位置关系,关键是根据角平分线的性质解答.
9、C
【解析】
分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.
详解:设玻璃球的体积为x,则有
解得30<x<1.
故一颗玻璃球的体积在30cm3以上,1cm3以下.
故选C.
点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x的取值范围.
10、B
【解析】
根据中位数和众数的定义分别进行解答即可.
【详解】
解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;
160出现了2次,出现的次数最多,则众数是160;
故选B.
【点睛】
此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、A, 18, 1
【解析】
A、首先确定小明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可;
B、分别得到前后面,上下面,左右面的面积,相加即可求解.
【详解】
A、∵小亮所搭几何体恰好可以和小明所搭几何体拼成一个无缝隙的大长方体,
∴该长方体需要小立方体4×32=36个,
∵小明用18个边长为1的小正方体搭成了一个几何体,
∴小亮至少还需36-18=18个小立方体,
B、表面积为:2×(8+8+7)=1.
故答案是:A,18,1.
【点睛】
考查了由三视图判断几何体的知识,能够确定两人所搭几何体的形状是解答本题的关键.
12、-1
【解析】
根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论.
【详解】
故答案为
【点睛】
本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键.
13、x≥-1
【解析】
试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.
考点:函数自变量的取值范围.
14、1
【解析】
试题分析:根据题意可得圆心角的度数为:,则S==1.
考点:扇形的面积计算.
15、1
【解析】
一组数据中出现次数最多的数据叫做众数,由此可得出答案.
【详解】
∵一组数据1,3,5,x,1,5的众数和中位数都是1,
∴x=1,
故答案为1.
【点睛】
本题考查了众数的知识,解答本题的关键是掌握众数的定义.
16、0
【解析】
分析:先计算乘方、零指数幂,再计算加减可得结果.
详解:1-1=0
故答案为0.
点睛:零指数幂成立的条件是底数不为0.
三、解答题(共8题,共72分)
17、 (1)、y=-+x+4;(2)、不存在,理由见解析.
【解析】
试题分析:(1)、首先设抛物线的解析式为一般式,将点C和点A意见对称轴代入求出函数解析式;(2)、本题利用假设法来进行证明,假设存在这样的点,然后设出点F的坐标求出FH和FG的长度,然后得出面积与t的函数关系式,根据方程无解得出结论.
试题解析:(1)、∵抛物线y=a+bx+c(a≠0)过点C(0,4) ∴C=4①
∵-=1 ∴b=-2a② ∵抛物线过点A(-2,0) ∴4a-2b+c="0" ③
由①②③解得:a=-,b=1,c=4 ∴抛物线的解析式为:y=-+x+4
(2)、不存在 假设存在满足条件的点F,如图所示,连结BF、CF、OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G. 设点F的坐标为(t,+t+4),其中0<t<4 则FH=+t+4 FG=t
∴△OBF的面积=OB·FH=×4×(+t+4)=-+2t+8 △OFC的面积=OC·FG=2t
∴四边形ABFC的面积=△AOC的面积+△OBF的面积+△OFC的面积=-+4t+12
令-+4t+12=17 即-+4t-5=0 △=16-20=-4<0 ∴方程无解
∴不存在满足条件的点F
考点:二次函数的应用
18、(4)60;(4)作图见试题解析;(4)4.
【解析】
试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;
(4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;
(4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.
试题解析:(4)被调查的学生人数为:44÷40%=60(人);
(4)喜欢艺体类的学生数为:60-44-44-46=8(人),
如图所示:
全校最喜爱文学类图书的学生约有:4400×=4(人).
考点:4.条形统计图;4.用样本估计总体;4.扇形统计图.
19、(1)10%;(2)方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米,理由见解析
【解析】
(1)设3、4两月平均每月下调的百分率为x,根据下降率公式列方程解方程求出答案;
(2)分别计算出方案一与方案二的费用相比较即可;
(3)根据(1)的答案计算出6月份的价格即可得到答案.
【详解】
(1)设3、4两月平均每月下调的百分率为x,
由题意得:7500(1﹣x)2=6075,
解得:x1=0.1=10%,x2=1.9(舍),
答:3、4两月平均每月下调的百分率是10%;
(2)方案一:6075×100×0.98=595350(元),
方案二:6075×100﹣100×1.5×24=603900(元),
∵595350<603900,
∴方案一更优惠,小颖选择方案一:打9.8折购买;
(3)不会跌破4800元/平方米
因为由(1)知:平均每月下调的百分率是10%,
所以:6075(1﹣10%)2=4920.75(元/平方米),
∵4920.75>4800,
∴6月份该楼盘商品房成交均价不会跌破4800元/平方米.
【点睛】
此题考查一元二次方程的实际应用,方案比较计算,正确理解题意并列出方程解答问题是解题的关键.
20、(1)证明见解析;(2);(3);
【解析】
(1)连接OA、AD,如图,利用圆周角定理得到∠B=∠ADC,则可证明∠ADC=2
∠ACP,利用CD为直径得到∠DAC=90°,从而得到∠ADC=60°,∠C=30°,则∠AOP=60°,
于是可证明∠OAP=90°,然后根据切线的判断定理得到结论;
(2)利用∠P=30°得到OP=2OA,则,从而得到⊙O的直径;
(3)作EH⊥AD于H,如图,由点B等分半圆CD得到∠BAC=45°,则∠DAE=45°,设
DH=x,则DE=2x,所以 然后求出x即可
得到DE的长.
【详解】
(1)证明:连接OA、AD,如图,
∵∠B=2∠P,∠B=∠ADC,
∴∠ADC=2∠P,
∵AP=AC,
∴∠P=∠ACP,
∴∠ADC=2∠ACP,
∵CD为直径,
∴∠DAC=90°,
∴∠ADC=60°,∠C=30°,
∴△ADO为等边三角形,
∴∠AOP=60°,
而∠P=∠ACP=30°,
∴∠OAP=90°,
∴OA⊥PA,
∴PA是⊙O的切线;
(2)解:在Rt△OAP中,∵∠P=30°,
∴OP=2OA,
∴
∴⊙O的直径为;
(3)解:作EH⊥AD于H,如图,
∵点B等分半圆CD,
∴∠BAC=45°,
∴∠DAE=45°,
设DH=x,
在Rt△DHE中,DE=2x,
在Rt△AHE中,
∴
即
解得
∴
【点睛】
本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.
21、(1)详见解析;(1)①详见解析;②BP=AB.
【解析】
(1)根据要求画出图形即可;
(1)①连接BD,如图1,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;
②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;
【详解】
(1)解:补全图形如图 1:
(1)①证明:连接 BD,如图 1,
∵线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ,
∴AQ=AP,∠QAP=90°,
∵四边形 ABCD 是正方形,
∴AD=AB,∠DAB=90°,
∴∠1=∠1.
∴△ADQ≌△ABP,
∴DQ=BP,∠Q=∠3,
∵在 Rt△QAP 中,∠Q+∠QPA=90°,
∴∠BPD=∠3+∠QPA=90°,
∵在 Rt△BPD 中,DP1+BP1=BD1, 又∵DQ=BP,BD1=1AB1,
∴DP1+DQ1=1AB1.
②解:结论:BP=AB.
理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QN.
∵△ADQ≌△ABP,△ANQ≌△ACP,
∴DQ=PB,∠AQN=∠APC=45°,
∵∠AQP=45°,
∴∠NQC=90°,
∵CD=DN,
∴DQ=CD=DN=AB,
∴PB=AB.
【点睛】
本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴
22、见解析
【解析】
先连接AC,根据菱形性质证明△EAC≌△FCA,然后结合中垂线的性质即可证明点G在BD上.
【详解】
证明:如图,连接AC.
∵四边形ABCD是菱形,∴DA=DC,BD与AC互相垂直平分,
∴∠EAC=∠FCA.
∵AE=CF,AC=CA, ∴△EAC≌△FCA,
∴∠ECA=∠FAC, ∴GA=GC,
∴点G在AC的中垂线上,
∴点G在BD上.
【点睛】
此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.
23、(1)图形见解析,216件;(2)
【解析】
(1)由B班级的作品数量及其占总数量的比例可得4个班作品总数,再求得D班级的数量,可补全条形图,再用36乘四个班的平均数即估计全校的作品数;
(2)列表得出所有等可能结果,从中找到一男、一女的结果数,根据概率公式求解可得.
【详解】
(1)4个班作品总数为:件,所以D班级作品数量为:36-6-12-10=8;
∴估计全校共征集作品×36=324件.
条形图如图所示,
(2)男生有3名,分别记为A1,A2,A3,女生记为B,
列表如下:
A1
A2
A3
B
A1
(A1,A2)
(A1,A3)
(A1,B)
A2
(A2,A1)
(A2,A3)
(A2,B)
A3
(A3,A1)
(A3,A2)
(A3,B)
B
(B,A1)
(B,A2)
(B,A3)
由列表可知,共有12种等可能情况,其中选取的两名学生恰好是一男一女的有6种.
所以选取的两名学生恰好是一男一女的概率为.
【点睛】
考查了列表法或树状图法求概率以及扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.用到的知识点为:概率=所求情况数与总情况数之比.
24、
【解析】
试题分析:把分式化简,然后把x的值代入化简后的式子求值就可以了.
试题解析:原式=
=
当时,原式=.
考点:1.二次根式的化简求值;2.分式的化简求值.
云南曲靖市沾益区大坡乡2021-2022学年中考数学模试卷含解析: 这是一份云南曲靖市沾益区大坡乡2021-2022学年中考数学模试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,如果,那么代数式的值为,下列运算中,正确的是等内容,欢迎下载使用。
2022年云南曲靖市沾益区大坡乡市级名校中考数学猜题卷含解析: 这是一份2022年云南曲靖市沾益区大坡乡市级名校中考数学猜题卷含解析,共19页。试卷主要包含了不等式组的解集在数轴上表示为,-5的倒数是,已知等内容,欢迎下载使用。
2022年云南曲靖市沾益区大坡乡中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年云南曲靖市沾益区大坡乡中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了若等式x2+ax+19=,下列运算正确的是,如图,空心圆柱体的左视图是,如图,已知直线l1等内容,欢迎下载使用。