浙江杭州拱墅区锦绣育才2021-2022学年中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列运算正确的是( )
A.a2·a3﹦a6 B.a3+ a3﹦a6 C.|-a2|﹦a2 D.(-a2)3﹦a6
2.计算的结果是( )
A.1 B.﹣1 C.1﹣x D.
3.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )
A.1,2,3 B.1,1, C.1,1, D.1,2,
4.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为( )
A.90° B.120° C.270° D.360°
5.不等式组的解集是( )
A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤4
6.如下图所示,该几何体的俯视图是 ( )
A. B. C. D.
7.如图,A、B、C是⊙O上的三点,∠BAC=30°,则∠BOC的大小是( )
A.30° B.60° C.90° D.45°
8.下列四个图案中,不是轴对称图案的是( )
A. B. C. D.
9.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程y(km)与客车行驶时间x(h)间的函数关系如图,下列信息:
(1)出租车的速度为100千米/时;
(2)客车的速度为60千米/时;
(3)两车相遇时,客车行驶了3.75小时;
(4)相遇时,出租车离甲地的路程为225千米.
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
10.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G,下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=S△CEF,其中正确的是( )
A.①③ B.②④ C.①③④ D.②③④
二、填空题(共7小题,每小题3分,满分21分)
11.如图,已知圆柱底面的周长为,圆柱高为,在圆柱的侧面上,过点和点嵌有一圈金属丝,则这圈金属丝的周长最小为______.
12.如图,在四个小正方体搭成的几何体中,每个小正方体的棱长都是1,则该几何体的三视图的面积之和是_____.
13.如图,已知,D、E分别是边AB、AC上的点,且设,,那么______用向量、表示
14.如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是___结果保留
15.(2017黑龙江省齐齐哈尔市)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是______.
16.计算:=_____.
17.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为______.
三、解答题(共7小题,满分69分)
18.(10分)如图,在△ABC中,∠ABC=90°,D,E分别为AB,AC的中点,延长DE到点F,使EF=2DE.
(1)求证:四边形BCFE是平行四边形;
(2)当∠ACB=60°时,求证:四边形BCFE是菱形.
19.(5分)已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).
(1)在,,中,正方形ABCD的“关联点”有_____;
(2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;
(3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.
20.(8分)如图1,在△ABC中,点P为边AB所在直线上一点,连结CP,M为线段CP的中点,若满足∠ACP=∠MBA,则称点P为△ABC的“好点”.
(1)如图2,当∠ABC=90°时,命题“线段AB上不存在“好点”为 (填“真”或“假”)命题,并说明理由;
(2)如图3,P是△ABC的BA延长线的一个“好点”,若PC=4,PB=5,求AP的值;
(3)如图4,在Rt△ABC中,∠CAB=90°,点P是△ABC的“好点”,若AC=4,AB=5,求AP的值.
21.(10分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:
接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.
22.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.求该反比例函数和一次函数的解析式;求△AOB的面积;点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.
23.(12分)已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.
(1)求证:四边形FBGH是菱形;
(2)求证:四边形ABCH是正方形.
24.(14分)在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90°得到线段BC,抛物线y=ax2+bx+c经过点C.
(1)如图1,若抛物线经过点A和D(﹣2,0).
①求点C的坐标及该抛物线解析式;
②在抛物线上是否存在点P,使得∠POB=∠BAO,若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;
(2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(2,1),点Q在抛物线上,且满足∠QOB=∠BAO,若符合条件的Q点恰好有2个,请直接写出a的取值范围.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.
【详解】
a2·a3﹦a5,故A项错误;a3+ a3﹦2a3,故B项错误;a3+ a3﹦- a6,故D项错误,选C.
【点睛】
本题考查同底数幂加减乘除及乘方,解题的关键是清楚运算法则.
2、B
【解析】
根据同分母分式的加减运算法则计算可得.
【详解】
解:原式=
=
=
=-1,
故选B.
【点睛】
本题主要考查分式的加减法,解题的关键是熟练掌握同分母分式的加减运算法则.
3、D
【解析】
根据三角形三边关系可知,不能构成三角形,依此即可作出判定;
B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;
C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;
D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.
【详解】
∵1+2=3,不能构成三角形,故选项错误;
B、∵12+12=()2,是等腰直角三角形,故选项错误;
C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;
D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.
故选D.
4、B
【解析】
先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.
【详解】
∵图中是三个等边三角形,∠3=60°,
∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,
∠BAC=180°-60°-∠1=120°-∠1,
∵∠ABC+∠ACB+∠BAC=180°,
∴60°+(120°-∠2)+(120°-∠1)=180°,
∴∠1+∠2=120°.
故选B.
【点睛】
考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.
5、D
【解析】
试题分析:解不等式①可得:x>-1,解不等式②可得:x≤4,则不等式组的解为-1<x≤4,故选D.
6、B
【解析】
根据俯视图是从上面看到的图形解答即可.
【详解】
从上面看是三个长方形,故B是该几何体的俯视图.
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
7、B
【解析】
【分析】欲求∠BOC,又已知一圆周角∠BAC,可利用圆周角与圆心角的关系求解.
【详解】∵∠BAC=30°,
∴∠BOC=2∠BAC =60°(同弧所对的圆周角是圆心角的一半),
故选B.
【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
8、B
【解析】
根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
【详解】
A、是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项正确;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误.
故选:B.
【点睛】
本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.
9、D
【解析】
根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.
【详解】
由图象可得,
出租车的速度为:600÷6=100千米/时,故(1)正确,
客车的速度为:600÷10=60千米/时,故(2)正确,
两车相遇时,客车行驶时间为:600÷(100+60)=3.75(小时),故(3)正确,
相遇时,出租车离甲地的路程为:60×3.75=225千米,故(4)正确,
故选D.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.
10、C
【解析】
①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,
②设BC=a,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;
③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF为等边三角形,
④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和S△ABE,再通过比较大小就可以得出结论.
【详解】
①四边形ABCD是正方形,
∴AB═AD,∠B=∠D=90°.
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF
∵BC=CD,
∴BC-BE=CD-DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故①正确).
②设BC=a,CE=y,
∴BE+DF=2(a-y)
EF=y,
∴BE+DF与EF关系不确定,只有当y=(2−)a时成立,(故②错误).
③当∠DAF=15°时,
∵Rt△ABE≌Rt△ADF,
∴∠DAF=∠BAE=15°,
∴∠EAF=90°-2×15°=60°,
又∵AE=AF
∴△AEF为等边三角形.(故③正确).
④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:
(x+y)2+y2=(x)2
∴x2=2y(x+y)
∵S△CEF=x2,S△ABE=y(x+y),
∴S△ABE=S△CEF.(故④正确).
综上所述,正确的有①③④,
故选C.
【点睛】
本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.
【详解】
解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.
∵圆柱底面的周长为4dm,圆柱高为2dm,
∴AB=2dm,BC=BC′=2dm,
∴AC2=22+22=8,
∴AC=2dm.
∴这圈金属丝的周长最小为2AC=4dm.
故答案为:4dm
【点睛】
本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题把圆柱的侧面展开成矩形,“化曲面为平面”是解题的关键.
12、1
【解析】
根据三视图的定义求解即可.
【详解】
主视图是第一层是三个小正方形,第二层右边一个小正方形,主视图的面积是4,
俯视图是三个小正方形,俯视图的面积是3,
左视图是下边一个小正方形,第二层一个小正方形,左视图的面积是2,
几何体的三视图的面积之和是4+3+2=1,
故答案为1.
【点睛】
本题考查了简单组合体的三视图,利用三视图的定义是解题关键.
13、
【解析】
在△ABC中,,∠A=∠A,所以△ABC△ADE,所以DE=BC,再由向量的运算可得出结果.
【详解】
解:在△ABC中,,∠A=∠A,
∴△ABC△ADE,
∴DE=BC,
∴=3=3
∴=,
故答案为.
【点睛】
本题考查了相似三角形的判定和性质以及向量的运算.
14、
【解析】
直接利用已知得出所有的弧的半径为3,所有圆心角的和为:菱形的内角和,即可得出答案.
【详解】
由题意可得:所有的弧的半径为3,所有圆心角的和为:菱形的内角和,故图中阴影部分的周长是:6π.
故答案为6π.
【点睛】
本题考查了弧长的计算以及菱形的性质,正确得出圆心角是解题的关键.
15、10,,.
【解析】
解:如图,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10;
如图②所示:AD=8,连接BC,过点C作CE⊥BD于点E,则EC=8,BE=2BD=12,则BC=;
如图③所示:BD=6,由题意可得:AE=6,EC=2BE=16,故AC==.
故答案为10,,.
16、-
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
原式=2.
故答案为-.
【点睛】
本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
17、
【解析】
试题分析:将4400000用科学记数法表示为:4.4×1.
故答案为4.4×1.
考点:科学记数法—表示较大的数.
三、解答题(共7小题,满分69分)
18、(1)见解析;(2)见解析
【解析】
(1)由题意易得,EF与BC平行且相等,利用四边形BCFE是平行四边形.
(2)根据菱形的判定证明即可.
【详解】
(1)证明::∵D.E为AB,AC中点
∴DE为△ABC的中位线,DE=BC,
∴DE∥BC,
即EF∥BC,
∵EF=BC,
∴四边形BCEF为平行四边形.
(2)∵四边形BCEF为平行四边形,
∵∠ACB=60°,
∴BC=CE=BE,
∴四边形BCFE是菱形.
【点睛】
本题考查平行四边形的判定和性质、菱形的判定、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
19、(1)正方形ABCD的“关联点”为P2,P3;(2)或;(3).
【解析】
(1)正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断;
(2)因为E是正方形ABCD的“关联点”,所以E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),因为E在直线上,推出点E在线段FG上,求出点F、G的横坐标,再根据对称性即可解决问题;
(3)因为线段MN上的每一个点都是正方形ABCD的“关联点”,分两种情形:①如图3中,MN与小⊙Q相切于点F,求出此时点Q的横坐标;②M如图4中,落在大⊙Q上,求出点Q的横坐标即可解决问题;
【详解】
(1)由题意正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),
观察图象可知:正方形ABCD的“关联点”为P2,P3;
(2)作正方形ABCD的内切圆和外接圆,
∴OF=1,,.
∵E是正方形ABCD的“关联点”,
∴E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),
∵点E在直线上,
∴点E在线段FG上.
分别作FF’⊥x轴,GG’⊥x轴,
∵OF=1,,
∴,.
∴.
根据对称性,可以得出.
∴或.
(3)∵、N(0,1),
∴,ON=1.
∴∠OMN=60°.
∵线段MN上的每一个点都是正方形ABCD
的“关联点”,
①MN与小⊙Q相切于点F,如图3中,
∵QF=1,∠OMN=60°,
∴.
∵,
∴.
∴.
②M落在大⊙Q上,如图4中,
∵,,
∴.
∴.
综上:.
【点睛】
本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.
20、(1)真;(2);(3)或或.
【解析】
(1)先根据直角三角形斜边的中线等于斜边的一半可知MP=MB,从而∠MPB=∠MBP,然后根据三角形外角的性质说明即可;
(2)先证明△PAC∽△PMB,然后根据相似三角形的性质求解即可;
(3)分三种情况求解:P为线段AB上的“好点”, P为线段AB延长线上的“好点”, P为线段BA延长线上的“好点”.
【详解】
(1)真 .
理由如下:如图,当∠ABC=90°时,M为PC中点,BM=PM,
则∠MPB=∠MBP>∠ACP,
所以在线段AB上不存在“好点”;
(2)∵P为BA延长线上一个“好点”;
∴∠ACP=∠MBP;
∴△PAC∽△PMB;
∴即;
∵M为PC中点,
∴MP=2;
∴;
∴.
(3)第一种情况,P为线段AB上的“好点”,则∠ACP=∠MBA,找AP中点D,连结MD;
∵M为CP中点;
∴MD为△CPA中位线;
∴MD=2,MD//CA;
∴∠DMP=∠ACP=∠MBA;
∴△DMP∽△DBM;
∴DM2=DP·DB即4= DP·(5DP);
解得DP=1,DP=4(不在AB边上,舍去;)
∴AP=2
第二种情况(1),P为线段AB延长线上的“好点”,则∠ACP=∠MBA,找AP中点D,此时,D在线段AB上,如图,连结MD;
∵M为CP中点;
∴MD为△CPA中位线;
∴MD=2,MD//CA;
∴∠DMP=∠ACP=∠MBA;
∴△DMP∽△DBM
∴DM2=DP·DB即4= DP·(5DA)= DP·(5DP);
解得DP=1(不在AB延长线上,舍去),DP=4
∴AP=8;
第二种情况(2),P为线段AB延长线上的“好点”,找AP中点D,此时,D在AB延长线上,如图,连结MD;
此时,∠MBA>∠MDB>∠DMP=∠ACP,则这种情况不存在,舍去;
第三种情况,P为线段BA延长线上的“好点”,则∠ACP=∠MBA,
∴△PAC∽△PMB;
∴
∴BM垂直平分PC则BC=BP= ;
∴
∴综上所述,或或;
【点睛】
本题考查了信息迁移,三角形外角的性质,直角三角形斜边的中线等于斜边的一半,相似三角形的判定与性质及分类讨论的数学思想,理解“好点”的定义并能进行分类讨论是解答本题的关键.
21、 (1) 60,90;(2)见解析;(3) 300人
【解析】
(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;
(2)由(1)可求得了解的人数,继而补全条形统计图;
(3)利用样本估计总体的方法,即可求得答案.
【详解】
解:(1)∵了解很少的有30人,占50%,
∴接受问卷调查的学生共有:30÷50%=60(人);
∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;
故答案为60,90;
(2)60﹣15﹣30﹣10=5;
补全条形统计图得:
(3)根据题意得:900×=300(人),
则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.
【点睛】
本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.
22、(1)y=﹣,y=﹣x+2;(2)6;(3)当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.
【解析】
(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;
(2)利用一次函数解析式求得C(4,0),即OC=4,即可得出△AOB的面积=×4×3=6;
(3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.
【详解】
(1)如图,在Rt△OAD中,∠ADO=90°,
∵tan∠AOD=,AD=3,
∴OD=2,
∴A(﹣2,3),
把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,
所以反比例函数解析式为:y=﹣,
把B(m,﹣1)代入y=﹣,得:m=6,
把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,
解得:,
所以一次函数解析式为:y=﹣x+2;
(2)当y=0时,﹣ x+2=0,
解得:x=4,
则C(4,0),
所以;
(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);
当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);
当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),
令y=0,得到y=﹣,即E4(﹣,0),
综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.
【点睛】
本题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解题的关键.
23、(1)见解析 (2)见解析
【解析】
(1)由三角形中位线知识可得DF∥BG,GH∥BF,根据菱形的判定的判定可得四边形FBGH是菱形;
(2)连结BH,交AC于点O,利用平行四边形的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC.再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解.
【详解】
(1)∵点F、G是边AC的三等分点,
∴AF=FG=GC.
又∵点D是边AB的中点,
∴DH∥BG.
同理:EH∥BF.
∴四边形FBGH是平行四边形,
连结BH,交AC于点O,
∴OF=OG,
∴AO=CO,
∵AB=BC,
∴BH⊥FG,
∴四边形FBGH是菱形;
(2)∵四边形FBGH是平行四边形,
∴BO=HO,FO=GO.
又∵AF=FG=GC,
∴AF+FO=GC+GO,即:AO=CO.
∴四边形ABCH是平行四边形.
∵AC⊥BH,AB=BC,
∴四边形ABCH是正方形.
【点睛】
本题考查正方形的判定,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键.
24、(1)①y=﹣x2+x+3;②P( ,)或P'( ,﹣);(2) ≤a<1;
【解析】
(1)①先判断出△AOB≌△GBC,得出点C坐标,进而用待定系数法即可得出结论;②分两种情况,利用平行线(对称)和直线和抛物线的交点坐标的求法,即可得出结论;(2)同(1)②的方法,借助图象即可得出结论.
【详解】
(1)①如图2,∵A(1,3),B(1,1),
∴OA=3,OB=1,
由旋转知,∠ABC=91°,AB=CB,
∴∠ABO+∠CBE=91°,
过点C作CG⊥OB于G,
∴∠CBG+∠BCG=91°,
∴∠ABO=∠BCG,
∴△AOB≌△GBC,
∴CG=OB=1,BG=OA=3,
∴OG=OB+BG=4
∴C(4,1),
抛物线经过点A(1,3),和D(﹣2,1),
∴,
∴,
∴抛物线解析式为y=﹣x2+x+3;
②由①知,△AOB≌△EBC,
∴∠BAO=∠CBF,
∵∠POB=∠BAO,
∴∠POB=∠CBF,
如图1,OP∥BC,
∵B(1,1),C(4,1),
∴直线BC的解析式为y=x﹣,
∴直线OP的解析式为y=x,
∵抛物线解析式为y=﹣x2+x+3;
联立解得,或(舍)
∴P(,);
在直线OP上取一点M(3,1),
∴点M的对称点M'(3,﹣1),
∴直线OP'的解析式为y=﹣x,
∵抛物线解析式为y=﹣x2+x+3;
联立解得,或(舍),
∴P'(,﹣);
(2)同(1)②的方法,如图3,
∵抛物线y=ax2+bx+c经过点C(4,1),E(2,1),∴,
∴,
∴抛物线y=ax2﹣6ax+8a+1,
令y=1,
∴ax2﹣6ax+8a+1=1,
∴x1×x2=
∵符合条件的Q点恰好有2个,
∴方程ax2﹣6ax+8a+1=1有一个正根和一个负根或一个正根和1,
∴x1×x2=≤1,
∵a<1,
∴8a+1≥1,
∴a≥﹣,
即:﹣≤a<1.
【点睛】
本题是二次函数综合题,考查了待定系数法,全等三角形的判定和性质,平行线的性质,对称的性质,解题的关键是求出直线和抛物线的交点坐标.
2024年浙江省杭州市拱墅区锦绣育才教育集团中考数学一模试卷(含解析): 这是一份2024年浙江省杭州市拱墅区锦绣育才教育集团中考数学一模试卷(含解析),共29页。
2023年浙江省杭州市拱墅区锦绣育才教育集团中考数学模拟试卷(五)(含解析): 这是一份2023年浙江省杭州市拱墅区锦绣育才教育集团中考数学模拟试卷(五)(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年浙江省杭州市拱墅区锦绣育才教育集团中考数学模拟试卷(二): 这是一份2023年浙江省杭州市拱墅区锦绣育才教育集团中考数学模拟试卷(二),共27页。试卷主要包含了选择题,填空题,解答题解答应写出文字说明等内容,欢迎下载使用。