|试卷下载
终身会员
搜索
    上传资料 赚现金
    宜兴市丁蜀镇陶都中学2022年中考数学仿真试卷含解析
    立即下载
    加入资料篮
    宜兴市丁蜀镇陶都中学2022年中考数学仿真试卷含解析01
    宜兴市丁蜀镇陶都中学2022年中考数学仿真试卷含解析02
    宜兴市丁蜀镇陶都中学2022年中考数学仿真试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    宜兴市丁蜀镇陶都中学2022年中考数学仿真试卷含解析

    展开
    这是一份宜兴市丁蜀镇陶都中学2022年中考数学仿真试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,如图,已知,用尺规作图作,方程,tan60°的值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列计算正确的是(  )
    A. += B.﹣= C.×=6 D.=4
    2.二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:
    ①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是(  )

    A.4个 B.3个 C.2个 D.1个
    3.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I为对称轴的交点,如图2,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是(  )

    A.18π B.27π C.π D.45π
    4.如图,已知,用尺规作图作.第一步的作法以点为圆心,任意长为半径画弧,分别交,于点,第二步的作法是( )

    A.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
    B.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
    C.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
    D.以点为圆心,长为半径画弧,与第1步所画的弧相交于点
    5.如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=(  )

    A. B.1 C. D.
    6.已知一组数据,,,,的平均数是2,方差是,那么另一组数据,,,,,的平均数和方差分别是  .
    A. B. C. D.
    7.方程(m–2)x2+3mx+1=0是关于x的一元二次方程,则( )
    A.m≠±2 B.m=2 C.m=–2 D.m≠2
    8.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为( )

    A.16 B.14 C.12 D.6
    9.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是( )
    A. B. C. D.
    10.tan60°的值是( )
    A. B. C. D.
    11.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有(  )

    A.1个 B.2个 C.3个 D.4个
    12.的整数部分是(  )
    A.3 B.5 C.9 D.6
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是_____.

    14.已知关于x的方程有解,则k的取值范围是_____.
    15.若关于x的方程的解是正数,则m的取值范围是____________________
    16.小红沿坡比为1:的斜坡上走了100米,则她实际上升了_____米.

    17.二次函数y=ax2+bx+c(a≠0)的部分对应值如下表:
    x

    ﹣3
    ﹣2
    0
    1
    3
    5

    y

    7
    0
    ﹣8
    ﹣9
    ﹣5
    7

    则二次函数y=ax2+bx+c在x=2时,y=______.
    18.计算:a3÷(﹣a)2=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.

    20.(6分)先化简再求值:(a﹣)÷,其中a=1+,b=1﹣.
    21.(6分)已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.
    22.(8分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?
    23.(8分)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
    种类
    A
    B
    C
    D
    E
    F
    上学方式
    电动车
    私家车
    公共交通
    自行车
    步行
    其他
    某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图

    根据以上信息,回答下列问题:参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.
    24.(10分)平面直角坐标系中(如图),已知抛物线经过点和,与y轴相交于点C,顶点为P.

    (1)求这条抛物线的表达式和顶点P的坐标;
    (2)点E在抛物线的对称轴上,且,求点E的坐标;
    (3)在(2)的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,,求点Q的坐标.
    25.(10分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.

    26.(12分)如图1,已知直线l:y=﹣x+2与y轴交于点A,抛物线y=(x﹣1)2+m也经过点A,其顶点为B,将该抛物线沿直线l平移使顶点B落在直线l的点D处,点D的横坐标n(n>1).

    (1)求点B的坐标;
    (2)平移后的抛物线可以表示为  (用含n的式子表示);
    (3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a.
    ①请写出a与n的函数关系式.
    ②如图2,连接AC,CD,若∠ACD=90°,求a的值.
    27.(12分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.

    (1)求证:∠CBF=∠CAB. (2)若AB=5,sin∠CBF=,求BC和BF的长.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把 化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断.
    【详解】
    解:A、与不能合并,所以A选项不正确;
    B、-=2−=,所以B选项正确;
    C、×=,所以C选项不正确;
    D、=÷=2÷=2,所以D选项不正确.
    故选B.
    【点睛】
    此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.
    2、D
    【解析】
    ①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2,
    所以﹣=﹣1,可得b=2a,
    当x=﹣3时,y<0,
    即9a﹣3b+c<0,
    9a﹣6a+c<0,
    3a+c<0,
    ∵a<0,
    ∴4a+c<0,
    所以①选项结论正确;
    ②∵抛物线的对称轴是直线x=﹣1,
    ∴y=a﹣b+c的值最大,
    即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,
    ∴am2+bm<a﹣b,
    m(am+b)+b<a,
    所以此选项结论不正确;
    ③ax2+(b﹣1)x+c=0,
    △=(b﹣1)2﹣4ac,
    ∵a<0,c>0,
    ∴ac<0,
    ∴﹣4ac>0,
    ∵(b﹣1)2≥0,
    ∴△>0,
    ∴关于x的一元二次方程ax2+(b﹣1)x+c=0有实数根;
    ④由图象得:当x>﹣1时,y随x的增大而减小,
    ∵当k为常数时,0≤k2≤k2+1,
    ∴当x=k2的值大于x=k2+1的函数值,
    即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,
    ak4+bk2>a(k2+1)2+b(k2+1),
    所以此选项结论不正确;
    所以正确结论的个数是1个,
    故选D.
    3、B
    【解析】
    先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可.
    【详解】
    如图1中,

    ∵等边△DEF的边长为2π,等边△ABC的边长为3,
    ∴S矩形AGHF=2π×3=6π,
    由题意知,AB⊥DE,AG⊥AF,
    ∴∠BAG=120°,
    ∴S扇形BAG==3π,
    ∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;
    故选B.
    【点睛】
    本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边△DEF扫过的图形.
    4、D
    【解析】
    根据作一个角等于已知角的作法即可得出结论.
    【详解】
    解:用尺规作图作∠AOC=2∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,
    第二步的作图痕迹②的作法是以点F为圆心,EF长为半径画弧.
    故选:D.
    【点睛】
    本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键.
    5、D
    【解析】
    由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出△ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到∠BAC=30°,求得AC⊥BE,推出C在对角线AH上,得到A,C,H共线,于是得到结论.
    【详解】
    如图,连接AC交BE于点O,
    ∵将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,
    ∴AB=BE,
    ∵四边形AEHB为菱形,
    ∴AE=AB,
    ∴AB=AE=BE,
    ∴△ABE是等边三角形,
    ∵AB=3,AD=,
    ∴tan∠CAB=,
    ∴∠BAC=30°,
    ∴AC⊥BE,
    ∴C在对角线AH上,
    ∴A,C,H共线,
    ∴AO=OH=AB=,
    ∵OC=BC=,
    ∵∠COB=∠OBG=∠G=90°,
    ∴四边形OBGM是矩形,
    ∴OM=BG=BC=,
    ∴HM=OH﹣OM=,
    故选D.

    【点睛】
    本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.
    6、D
    【解析】
    根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.
    【详解】
    解:∵数据x1,x2,x3,x4,x5的平均数是2,
    ∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;
    ∵数据x1,x2,x3,x4,x5的方差为,
    ∴数据3x1,3x2,3x3,3x4,3x5的方差是×32=3,
    ∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,
    故选D.
    【点睛】
    本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.
    7、D
    【解析】
    试题分析:根据一元二次方程的概念,可知m-2≠0,解得m≠2.
    故选D
    8、C
    【解析】
    先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
    【详解】
    ∵AB=AC=15,AD平分∠BAC,
    ∴D为BC中点,
    ∵点E为AC的中点,
    ∴DE为△ABC中位线,
    ∴DE=AB,
    ∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
    ∴AB+AC+BC=42,
    ∴BC=42-15-15=12,
    故选C.
    【点睛】
    此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.
    9、D
    【解析】
    A选项:

    ∠1+∠2=360°-90°×2=180°;
    B选项:

    ∵∠2+∠3=90°,∠3+∠4=90°,
    ∴∠2=∠4,
    ∵∠1+∠4=180°,
    ∴∠1+∠2=180°;
    C选项:

    ∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,
    ∵∠1+∠EFC=180°,∴∠1+∠2=180°;
    D选项:∠1和∠2不一定互补.
    故选D.
    点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.
    10、A
    【解析】
    根据特殊角三角函数值,可得答案.
    【详解】
    tan60°=
    故选:A.
    【点睛】
    本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
    11、C
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.
    故选:C.
    【点睛】
    掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
    12、C
    【解析】
    解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故选C.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    通过找到临界值解决问题.
    【详解】
    由题意知,令3x-1=x,
    x=,此时无输出值
    当x>时,数值越来越大,会有输出值;
    当x<时,数值越来越小,不可能大于10,永远不会有输出值
    故x≤,
    故答案为x≤.
    【点睛】
    本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题.
    14、k≠1
    【解析】
    试题分析:因为,所以1-x+2(x-2)=-k,所以1-x+2x-4=-k,所以x=3-k,所以,因为原方程有解,所以,解得.
    考点:分式方程.
    15、m<4且m≠2
    【解析】
    解方程得x=4-m,由已知可得x>0且x-2≠0,则有4-m >0且4-m-2≠0,解得:m<4且m≠2.
    16、50
    【解析】
    根据题意设铅直距离为x,则水平距离为,根据勾股定理求出x的值,即可得到结果.
    【详解】
    解:设铅直距离为x,则水平距离为,
    根据题意得:,
    解得:(负值舍去),
    则她实际上升了50米,
    故答案为:50
    【点睛】
    本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.
    17、﹣1
    【解析】
    试题分析:观察表中的对应值得到x=﹣3和x=5时,函数值都是7,则根据抛物线的对称性得到对称轴为直线x=1,所以x=0和x=2时的函数值相等,
    解:∵x=﹣3时,y=7;x=5时,y=7,
    ∴二次函数图象的对称轴为直线x=1,
    ∴x=0和x=2时的函数值相等,
    ∴x=2时,y=﹣1.
    故答案为﹣1.
    18、a
    【解析】
    利用整式的除法运算即可得出答案.
    【详解】
    原式,
    .
    【点睛】
    本题考查的知识点是整式的除法,解题关键是先将变成,再进行运算.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)长为18米、宽为7米或长为14米、宽为9米;(1)若篱笆再增加4m,围成的矩形花圃面积不能达到172m1.
    【解析】
    (1)假设能,设AB的长度为x米,则BC的长度为(31﹣1x)米,再根据矩形面积公式列方程求解即可得到答案.
    (1)假设能,设AB的长度为y米,则BC的长度为(36﹣1y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.
    【详解】
    (1)假设能,设AB的长度为x米,则BC的长度为(31﹣1x)米,
    根据题意得:x(31﹣1x)=116,
    解得:x1=7,x1=9,
    ∴31﹣1x=18或31﹣1x=14,
    ∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.
    (1)假设能,设AB的长度为y米,则BC的长度为(36﹣1y)米,
    根据题意得:y(36﹣1y)=172,
    整理得:y1﹣18y+85=2.
    ∵△=(﹣18)1﹣4×1×85=﹣16<2,
    ∴该方程无解,
    ∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到172m1.
    20、原式=
    【解析】
    括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.
    【详解】
    原式=
    =
    =,
    当a=1+,b=1﹣时,
    原式==.
    【点睛】
    本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.
    21、等腰直角三角形
    【解析】
    首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.
    【详解】
    解:∵a2c2-b2c2=a4-b4,
    ∴a4-b4-a2c2+b2c2=0,
    ∴(a4-b4)-(a2c2-b2c2)=0,
    ∴(a2+b2)(a2-b2)-c2(a2-b2)=0,
    ∴(a2+b2-c2)(a2-b2)=0
    得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,
    即△ABC为直角三角形或等腰三角形或等腰直角三角形.
    考点:勾股定理的逆定理.
    22、(1)二月份每辆车售价是900元;(2)每辆山地自行车的进价是600元.
    【解析】
    (1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设每辆山地自行车的进价为y元,根据利润=售价﹣进价,即可得出关于y的一元一次方程,解之即可得出结论.
    【详解】
    (1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,
    根据题意得:,
    解得:x=900,
    经检验,x=900是原分式方程的解,
    答:二月份每辆车售价是900元;
    (2)设每辆山地自行车的进价为y元,
    根据题意得:900×(1﹣10%)﹣y=35%y,
    解得:y=600,
    答:每辆山地自行车的进价是600元.
    【点睛】
    本题考查了分式方程的应用、一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
    23、 (1)450、63; ⑵36°,图见解析; (3)2460 人.
    【解析】
    (1)根据“骑电动车”上下的人数除以所占的百分比,即可得到调查学生数;用调查学生数乘以选择类的人数所占的百分比,即可求出选择类的人数.
    (2)求出类的百分比,乘以即可求出类对应的扇形圆心角的度数;由总学生数求出选择公共交通的人数,补全统计图即可;
    (3)由总人数乘以“绿色出行”的百分比,即可得到结果.
    【详解】
    (1) 参与本次问卷调查的学生共有:(人);
    选择类的人数有:
    故答案为450、63;
    (2)类所占的百分比为:
    类对应的扇形圆心角的度数为:
    选择类的人数为:(人).
    补全条形统计图为:

    (3) 估计该校每天“绿色出行”的学生人数为3000×(1-14%-4%)=2460 人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    24、(1),顶点P的坐标为;(2)E点坐标为;(3)Q点的坐标为.
    【解析】
    (1)利用交点式写出抛物线解析式,把一般式配成顶点式得到顶点P的坐标;
    (2)设,根据两点间的距离公式,利用得到,然后解方程求出t即可得到E点坐标;
    (3)直线交轴于,作于,如图,利用得到,设,则,再在中利用正切的定义得到,即,然后解方程求出m即可得到Q点坐标.
    【详解】
    解:(1)抛物线解析式为,
    即,

    顶点P的坐标为;
    (2)抛物线的对称轴为直线,
    设,

    ,解得,
    E点坐标为;
    (3)直线交x轴于F,作MN⊥直线x=2于H,如图,

    而,

    设,则,
    在中,,

    整理得,解得(舍去),,
    Q点的坐标为.

    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和锐角三角函数的定义;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.
    25、甲建筑物的高度约为,乙建筑物的高度约为.
    【解析】
    分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.
    详解:如图,过点作,垂足为.

    则.
    由题意可知,,,,,.
    可得四边形为矩形.
    ∴,.
    在中,,
    ∴.
    在中,,
    ∴.
    ∴ .
    ∴.
    答:甲建筑物的高度约为,乙建筑物的高度约为.
    点睛:本题考查解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.
    26、(1)B(1,1);(2)y=(x﹣n)2+2﹣n.(3)a=;a=+1.
    【解析】
    1) 首先求得点A的坐标, 再求得点B的坐标, 用h表示出点D的坐标后代入直线的解析式即可验证答案。
    (2) ①根据两种不同的表示形式得到m和h之间的函数关系即可。
    ②点C作y轴的垂线, 垂足为E, 过点D作DF⊥CE于点F, 证得△ACE~△CDF, 然后用m表示出点C和点D的坐标, 根据相似三角形的性质求得m的值即可。
    【详解】
    解:(1)当x=0时候,y=﹣x+2=2,
    ∴A(0,2),
    把A(0,2)代入y=(x﹣1)2+m,得1+m=2
    ∴m=1.
    ∴y=(x﹣1)2+1,
    ∴B(1,1)
    (2)由(1)知,该抛物线的解析式为:y=(x﹣1)2+1,
    ∵∵D(n,2﹣n),
    ∴则平移后抛物线的解析式为:y=(x﹣n)2+2﹣n.
    故答案是:y=(x﹣n)2+2﹣n.
    (3)①∵C是两个抛物线的交点,
    ∴点C的纵坐标可以表示为:
    (a﹣1)2+1或(a﹣n)2﹣n+2
    由题意得(a﹣1)2+1=(a﹣n)2﹣n+2,
    整理得2an﹣2a=n2﹣n
    ∵n>1
    ∴a==.
    ②过点C作y轴的垂线,垂足为E,过点D作DF⊥CE于点F
    ∵∠ACD=90°,
    ∴∠ACE=∠CDF
    又∵∠AEC=∠DFC
    ∴△ACE∽△CDF
    ∴=.
    又∵C(a,a2﹣2a+2),D(2a,2﹣2a),
    ∴AE=a2﹣2a,DF=m2,CE=CF=a
    ∴=
    ∴a2﹣2a=1
    解得:a=±+1
    ∵n>1
    ∴a=>
    ∴a=+1
    【点睛】本题主要考查二次函数的应用和相似三角形的判定与性质,需综合运用各知识求解。
    27、(1)证明略;(2)BC=,BF=.
    【解析】
    试题分析:(1)连结AE.有AB是⊙O的直径可得∠AEB=90°再有BF是⊙O的切线可得BF⊥AB,利用同角的余角相等即可证明;
    (2)在Rt△ABE中有三角函数可以求出BE,又有等腰三角形的三线合一可得BC=2BE,
    过点C作CG⊥AB于点G.可求出AE,再在Rt△ABE中,求出sin∠2,cos∠2.然后再在Rt△CGB中求出CG,最后证出△AGC∽△ABF有相似的性质求出BF即可.
    试题解析:

    (1)证明:连结AE.∵AB是⊙O的直径, ∴∠AEB=90°,∴∠1+∠2=90°.
    ∵BF是⊙O的切线,∴BF⊥AB, ∴∠CBF +∠2=90°.∴∠CBF =∠1.
    ∵AB=AC,∠AEB=90°, ∴∠1=∠CAB.
    ∴∠CBF=∠CAB.

    (2)解:过点C作CG⊥AB于点G.∵sin∠CBF=,∠1=∠CBF, ∴sin∠1=.
    ∵∠AEB=90°,AB=5. ∴BE=AB·sin∠1=.
    ∵AB=AC,∠AEB=90°, ∴BC=2BE=.
    在Rt△ABE中,由勾股定理得.
    ∴sin∠2=,cos∠2=.
    在Rt△CBG中,可求得GC=4,GB=2. ∴AG=3.
    ∵GC∥BF, ∴△AGC∽△ABF. ∴,
    ∴.
    考点:切线的性质,相似的性质,勾股定理.

    相关试卷

    宜兴市丁蜀镇陶都中学2023-2024学年数学九上期末复习检测模拟试题含答案: 这是一份宜兴市丁蜀镇陶都中学2023-2024学年数学九上期末复习检测模拟试题含答案,共9页。

    2023-2024学年宜兴市丁蜀镇陶都中学数学八上期末综合测试试题含答案: 这是一份2023-2024学年宜兴市丁蜀镇陶都中学数学八上期末综合测试试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,下列各式,下列表述中,能确定准确位置的是,下列各式中,正确的是等内容,欢迎下载使用。

    2022-2023学年宜兴市丁蜀镇陶都中学数学七年级第二学期期末监测模拟试题含答案: 这是一份2022-2023学年宜兴市丁蜀镇陶都中学数学七年级第二学期期末监测模拟试题含答案,共6页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map