还剩12页未读,
继续阅读
所属成套资源:全套中考数学复习拓展专项课后练课件
成套系列资料,整套一键下载
中考数学复习拓展专项二相似三角形的常见考法技巧课后练课件
展开这是一份中考数学复习拓展专项二相似三角形的常见考法技巧课后练课件,共20页。PPT课件主要包含了基础题等内容,欢迎下载使用。
1.如图,AC与BD相交于点E,AD∥BC.若AE∶AC=1∶3,则S△AED∶S△CEB=( )A.1∶9 B.1∶4 C.1∶ D.1∶
2.【2022泉州模拟4分】如图,等边三角形ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=4,CE=3,则△ABC的边长为( )A.12 B.14 C.15 D.16
3.如图,正方形ABCD的边长为4,E是BC上一点,过点E作EF⊥AE,交DC于点F,连接AF,则AF的最小值是( )A.5 B. C.2 D.3
4.如图,有一块三角形土地,它的底边BC=100 m,高AH=80 m,某单位要沿底边BC建一座地基是矩形的大楼,且矩形的两个顶点D、G分别在AB、AC上,另两个顶点E、F在BC上.当这座大楼的地基面积为1 875 m2时,EF的长为____________________.
【答案】 62.5 m或37.5 m
5.如图,在Rt△ABC中,AD是斜边BC上的高,∠ABC的平分线BE交AC于E,交AD于F.求证:
6.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D.求证:CE2=DE·PE.
证明:∵BG⊥AP,PE⊥AB,∴∠AEP=∠DEB=∠AGB=90°.∴∠P+∠PAB=90°,∠PAB+∠ABG=90°.∴∠P=∠ABG.∴△AEP∽△DEB.
7.(1)数学课上,老师给出了一个模型:如图①,点C、A、E在同一条直线上,∠BAD=∠ACB=∠AED=90°,由∠1+∠2+∠BAD=180°,∠2+∠D+∠AED=180°,可得∠1=∠D,又由∠ACB=∠AED=90°,可得△ABC∽△DAE,进而得到 =________.我们把这个模型称为“一线三等角”模型.
(2)某数学小组受此模型的启发,将三等角变为非直角,如图②,在△ABC中,AB=AC=10,BC=12,点P是BC边上的一个动点(不与B、C重合),点D是AC边上的一个动点,且∠APD=∠B.①求证:△ABP∽△PCD;
证明:∵AB=AC,∴∠B=∠C,∵∠APC=∠B+∠BAP,∠APC=∠APD+∠CPD,∠APD=∠B,∴∠BAP=∠CPD,∵∠B=∠C,∴△ABP∽△PCD.
②当点P为BC中点时,求CD的长.
(3)在(2)的条件下,当△APD为等腰三角形时,请直接写出BP的长.
8.如图①,若△ABD∽△ACE,且点B,D,C在同一直线上,则称△ABD与△ACE为旋转相似三角形.(1)如图②,△ABC和△ADE是等边三角形,点D在边BC上,连接CE.求证:△ABD与△ACE是旋转相似三角形;
(2)如图③,△ABD与△ACE是旋转相似三角形,AD∥CE,求证:AC=DE.
相关课件
2023年中考复习大串讲初中数学之 拓展专项二 相似三角形的常见考法技巧 课件:
这是一份2023年中考复习大串讲初中数学之 拓展专项二 相似三角形的常见考法技巧 课件,共33页。PPT课件主要包含了图10,图11等内容,欢迎下载使用。
中考数学复习方法技巧突破(七)圆中常见辅助线的作法作业课件:
这是一份中考数学复习方法技巧突破(七)圆中常见辅助线的作法作业课件,共10页。
人教版中考数学一轮复习--拓展专项二 相似三角形的常见考法技巧(精品课件):
这是一份人教版中考数学一轮复习--拓展专项二 相似三角形的常见考法技巧(精品课件),共33页。PPT课件主要包含了图10,图11等内容,欢迎下载使用。