终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2018-2022年北京中考数学5年真题1年模拟汇编 专题20 统计与概率(学生卷+教师卷)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题20 统计与概率-5年(2018~2022)中考1年模拟数学分项汇编(北京专用)(原卷版).docx
    • 解析
      专题20 统计与概率-5年(2018~2022)中考1年模拟数学分项汇编(北京专用)(解析版).docx
    专题20 统计与概率-5年(2018~2022)中考1年模拟数学分项汇编(北京专用)(原卷版)第1页
    专题20 统计与概率-5年(2018~2022)中考1年模拟数学分项汇编(北京专用)(原卷版)第2页
    专题20 统计与概率-5年(2018~2022)中考1年模拟数学分项汇编(北京专用)(原卷版)第3页
    专题20 统计与概率-5年(2018~2022)中考1年模拟数学分项汇编(北京专用)(解析版)第1页
    专题20 统计与概率-5年(2018~2022)中考1年模拟数学分项汇编(北京专用)(解析版)第2页
    专题20 统计与概率-5年(2018~2022)中考1年模拟数学分项汇编(北京专用)(解析版)第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2018-2022年北京中考数学5年真题1年模拟汇编 专题20 统计与概率(学生卷+教师卷)

    展开

    这是一份2018-2022年北京中考数学5年真题1年模拟汇编 专题20 统计与概率(学生卷+教师卷),文件包含专题20统计与概率-5年20182022中考1年模拟数学分项汇编北京专用解析版docx、专题20统计与概率-5年20182022中考1年模拟数学分项汇编北京专用原卷版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
    专题20 统计与概率

    一、单选题
    1.(2022·北京·中考真题)不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是(       )
    A. B. C. D.
    2.(2021·北京·中考真题)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是(       )
    A. B. C. D.
    3.(2020·北京·中考真题)不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是(       )
    A. B. C. D.
    4.(2019·北京·中考真题)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.
    学 生
    类 型
    人数
    时间





    性别

    7
    31
    25
    30
    4

    8
    29
    26
    32
    8
    学段
    初中

    25
    36
    44
    11
    高中






    下面有四个推断:
    ①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间
    ②这200名学生参加公益劳动时间的中位数在20-30之间
    ③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间
    ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间
    所有合理推断的序号是(        )
    A.①③ B.②④ C.①②③ D.①②③④
    二、填空题
    5.(2022·北京·中考真题)某商场准备进400双滑冰鞋,了解了某段时间内销售的40双滑冰鞋的鞋号,数据如下:
    鞋号
    35
    36
    37
    38
    39
    40
    41
    42
    43
    销售量/双
    2
    4
    5
    5
    12
    6
    3
    2
    1
    根据以上数据,估计该商场进鞋号需求最多的滑冰鞋的数量为________双.
    6.(2021·北京·中考真题)有甲、乙两组数据,如表所示:

    11
    12
    13
    14
    15

    12
    12
    13
    14
    14
    甲、乙两组数据的方差分别为,则______________(填“>”,“<”或“=”).
    7.(2019·北京·中考真题)小天想要计算一组数据92,90,94,86,99,85的方差.在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,4,9,5.记这组新数据的方差为,则______. (填“”,“”或“”)
    8.(2018·北京·中考真题)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:
    公交车用时公交车用时的频数
    线路




    合计
    A
    59
    151
    166
    124
    500
    B
    50
    50
    122
    278
    500
    C
    45
    265
    167
    23
    500
    早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.
    三、解答题
    9.(2022·北京·中考真题)某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.
    a.甲、乙两位同学得分的折线图:

    b.丙同学得分:
    10,10,10,9,9,8,3,9,8,10
    c.甲、乙、丙三位同学得分的平均数:
    同学



    平均数
    8.6
    8.6
    m
    根据以上信息,回答下列问题:
    (1)求表中m的值;
    (2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);
    (3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).
    10.(2021·北京·中考真题)为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.
    .甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:):

    .甲城市邮政企业4月份收入的数据在这一组的是:10.0,10.0,10.1,10.9,11.4,11.5,11.6,11.8
    .甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:

    平均数
    中位数
    甲城市
    10.8

    乙城市
    11.0
    11.5
    根据以上信息,回答下列问题:
    (1)写出表中的值;
    (2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为.在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为.比较的大小,并说明理由;
    (3)若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).
    11.(2020·北京·中考真题)小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:
    .小云所住小区5月1日至30日的厨余垃圾分出量统计图:

    .小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:
    时段
    1日至10日
    11日至20日
    21日至30日
    平均数
    100
    170
    250
    (1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 (结果取整数)
    (2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 倍(结果保留小数点后一位);
    (3)记该小区5月1日至10日的厨余垃圾分出量的方差为5月11日至20日的厨余垃圾分出量的方差为,5月21日至30日的厨余垃圾分出量的方差为.直接写出的大小关系.
    12.(2019·北京·中考真题)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:
    a.国家创新指数得分的频数分布直方图(数据分成7组:
    30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);

    b.国家创新指数得分在60≤x<70这一组的是:61.7     62.4     63.6     65.9     66.4     68.5     69.1     69.3     69.5
    c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:

    d.中国的国家创新指数得分为69.5.
    (以上数据来源于《国家创新指数报告(2018)》)
    根据以上信息,回答下列问题:
    (1)中国的国家创新指数得分排名世界第______;
    (2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线的上方.请在图中用“”圈出代表中国的点;
    (3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)
    (4)下列推断合理的是______.
    ①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;
    ②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.
    13.(2018·北京·中考真题)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.
    .A课程成绩的频数分布直方图如下(数据分成6组:,,,,,);

    .A课程成绩在这一组是:
    70   71   71   71   76   76   77   78         79   79   79   
    .A,B两门课程成绩的平均数、中位数、众数如下:
    课程
    平均数
    中位数
    众数
    A



    B

    70
    83
    根据以上信息,回答下列问题:
    (1)写出表中的值;
    (2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______;
    (3)假设该年级学生都参加此次测试,估计A课程成绩超过分的人数.

    一、单选题
    1.(2022·北京平谷·一模)从甲、乙、丙三名同学中随机抽取两名同学去参加义务劳动,则甲与乙恰好被选中的概率是(  )
    A. B. C. D.
    2.(2022·北京市燕山教研中心一模)如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京冬奥会的会徽、吉祥物(冰墩墩)、主题口号和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是奖牌的概率是(       )

    A. B. C. D.
    3.(2022·北京东城·一模)某班甲、乙、丙三位同学5次数学成绩及班级平均分的折线统计图如下,则下列判断错误的是(     )

    A.甲的数学成绩高于班级平均分
    B.乙的数学成绩在班级平均分附近波动
    C.丙的数学成绩逐次提高
    D.甲、乙、丙三人中,甲的数学成绩最不稳定
    4.(2022·北京四中模拟预测)甲、乙两个学习小组各有 5 名同学, 两组同学某次考试的语文、数学成绩如下图所示, 其中“+”表示甲组同学, “•”表示乙组同学,从这两个学习小组数学成绩高于 80 分的同学中任取一人, 此人恰为甲组同学的概率是(     )

    A. B. C. D.
    5.(2022·北京一七一中一模)在一个不透明纸箱中放有除了数字不同外,其它完全相同2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为(       )
    A. B. C. D.
    6.(2022·北京昌平·模拟预测)在一个不透明纸箱中放有除了数字不同外,其它完全相同的2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之积为偶数的概率为(       )
    A. B. C. D.
    7.(2022·北京门头沟·一模)某数学兴趣小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图所示的统计图,那么符合这一结果的实验最有可能的是(     )

    A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
    B.一副只有四种花色的52张普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
    C.抛掷一个质地均匀的正六面体骰子,向上的面点数是4
    D.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
    8.(2022·北京石景山·一模)研究与试验发展(R&D)经费是指报告期为实施研究与试验发展(R&D)活动而实际发生的全部经费支出.基础研究活动是研究与试验发展(R&D)活动的重要组成.下面的统计图是自2016年以来全国基础研究经费及占R&D经费比重情况.

    根据统计图提供的信息,下面四个推断中错误的是(       )
    A.2016年至2021年,全国基础研究经费逐年上升
    B.2016年至2021年,全国基础研究经费占R&D经费比重逐年上升
    C.2016年至2021年,全国基础研究经费平均值超过1000亿元
    D.2021年全国基础研究经费比2016年的2倍还多
    9.(2022·北京丰台·一模)不透明的袋子中有3个小球,其中有1个红球,1个黄球,1个绿球,除颜色外3个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么两次摸出的小球都是红球的概率是(  )
    A. B. C. D.
    10.(2022·北京大兴·一模)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率为(       )
    A. B. C. D.
    11.(2022·北京市十一学校模拟预测)第24届冬奥会期间,小牛收集到4张卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀后摸出1张,放回洗匀再摸出一张,则这两张卡片正面图案恰好是两张滑雪的概率是(       )

    A. B. C. D.
    12.(2022·北京昌平·模拟预测)电脑上有一个有趣的“扫雷”游戏,图是扫雷游戏的一部分,说明:图中数字2表示在以该数字为中心的周边8个方格中有2个地雷,小旗表示该方格已被探明有地雷,现在还剩下A、B、C三个方格未被探明,其它地方为安全区(包括有数字的方格),则A、B、C三个方格中有地雷的概率最大的方格是(       )

    A.A B.B C.C D.无法确定
    13.(2022·北京朝阳·一模)下图是国家统计局公布的2021年居民消费价格月度涨跌幅度,月度同比和月度环比的平均数分别为,方差分别为,则(       )

    A. B. C. D.
    二、填空题
    14.(2022·北京石景山·一模)某班级学生分组做抛掷瓶盖的试验,各组试验结果如下表:
    累计抛掷次数
    100
    200
    300
    400
    500
    600
    盖面朝上次数
    54
    105
    158
    212
    264
    319
    盖面朝上的频率
    0.5400
    0.5250
    0.5267
    0.5300
    0.5280
    0.5317
    根据表格中的信息,估计抛掷一枚这样的瓶盖,落地后盖面朝上的概率为______.(精确到0.01)
    15.(2022·北京房山·一模)下表记录了甲、乙、丙三名射击运动员最近几次选拔赛成绩的平均数和方差:




    平均数
    9.35
    9.35
    9.34
    方差
    6.6
    6.9
    6.7
    根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择________.
    16.(2022·北京房山·二模)下列说法正确的是__________.
    (1)一组数据:1,2,2,3,若再添加一个数据2,则平均数和方差均不发生变化;
    (2)已知.若n为整数,且,则n的值为44;
    (3)如图是小明某一天测得的7次体温情况的折线统计图,这组数据的中位数是36.6.

    17.(2022·北京东城·一模)北京2022年冬奥会和冬残奥会的吉祥物“冰墩墩”和“雪容融”广受大家的喜爱.即将在2022年9月举行的杭州亚运会的吉祥物“宸宸”“踪踪”“莲莲”也引起了大家的关注.现将五张正面分别印有以上5个吉祥物图案的卡片(卡片的形状、大小、质地都相同)背面朝上并洗匀,随机翻开一张正好是“冰墩墩”的概率是_________.

    18.(2022·北京四中模拟预测)已知 a,b,c 为非负整数, a≥b≥c,a+b+c=100,则当 a,b,c 方差最小时, a=_____________;当 a,b,c 方差最大时, a=______________
    19.(2022·北京市广渠门中学模拟预测)已知第一组数据:的方差为;第二组数据:的方差为,其中,则的大小关系为____________.
    20.(2022·北京市广渠门中学模拟预测)容器中有A,B,C,3种粒子,若相同种类的两颗粒子发生碰撞,则变成一颗B粒子;不同种类的两颗粒子发生碰撞,会变成另外一种粒子.例如,一颗A粒子和一颗B粒子发生碰撞则变成一颗C粒子.现有A粒子10颗,B粒子8颗,C粒子9颗,如果经过各种两两碰撞后,只剩1颗粒子.给出下列结论:
    ①最后一颗粒子可能是A粒子;          
    ②最后一颗粒子一定是C粒子
    ③最后一颗粒子一定不是B粒子;     
    ④以上都不正确
    其中正确结论的序号是_____________.(写出所有正确结论的序号)
    三、解答题
    21.(2022·北京房山·一模)为庆祝中国共产党建党100周年,讴歌中华民族实现伟大复兴的奋斗历程,继承革命先烈的优良传统,某中学开展了建党100周年知识测试.该校七、八年级各有300名学生参加,从中各随机抽取了50名学生的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息:
    a.八年级的频数分布直方图如下(数据分为5组:50≤x

    相关试卷

    2018-2022年河北中考数学5年真题1年模拟汇编 专题08 统计与概率(学生卷+教师卷):

    这是一份2018-2022年河北中考数学5年真题1年模拟汇编 专题08 统计与概率(学生卷+教师卷),文件包含专题08统计与概率-5年2018-2022中考1年模拟数学真题分项汇编河北专用解析版docx、专题08统计与概率-5年2018-2022中考1年模拟数学真题分项汇编河北专用原卷版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。

    2018-2022年江西中考数学5年真题1年模拟汇编 专题09 统计与概率(学生卷+教师卷):

    这是一份2018-2022年江西中考数学5年真题1年模拟汇编 专题09 统计与概率(学生卷+教师卷),文件包含专题09统计与概率-5年2018-2022中考1年模拟数学分项汇编江西专用解析版docx、专题09统计与概率-5年2018-2022中考1年模拟数学分项汇编江西专用原卷版docx等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。

    2018-2022年山西中考数学5年真题1年模拟汇编 专题10 统计与概率(5个考向)(学生卷+教师卷):

    这是一份2018-2022年山西中考数学5年真题1年模拟汇编 专题10 统计与概率(5个考向)(学生卷+教师卷),文件包含专题10统计与概率-5年2018-2022中考1年模拟数学分项汇编山西专用解析版docx、专题10统计与概率-5年2018-2022中考1年模拟数学分项汇编山西专用原卷版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map