


四川省乐山市实验中学2022年中考五模数学试题含解析
展开1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=,则△ACE的面积为( )
A.1B.C.2D.2
2.不等式2x﹣1<1的解集在数轴上表示正确的是( )
A.B.
C.D.
3.如图,若AB∥CD,则α、β、γ之间的关系为( )
A.α+β+γ=360°B.α﹣β+γ=180°
C.α+β﹣γ=180°D.α+β+γ=180°
4.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为( )
A.B.C.D.
5.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当t=3时,机器人一定位于点O;③机器人一定经过点D;④机器人一定经过点E;其中正确的有( )
A.①④B.①③C.①②③D.②③④
6.等式组的解集在下列数轴上表示正确的是( ).
A. B.
C. D.
7.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )
A.(3,1)B.(-4,1)C.(1,-1)D.(-3,1)
8.在一个直角三角形中,有一个锐角等于45°,则另一个锐角的度数是( )
A.75°B.60°C.45°D.30°
9.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为( )
A.B.C.4D.2+
10.如图,若AB∥CD,CD∥EF,那么∠BCE=( )
A.∠1+∠2B.∠2-∠1
C.180°-∠1+∠2D.180°-∠2+∠1
二、填空题(共7小题,每小题3分,满分21分)
11.某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为_____人.
12.如图,一次函数y1=kx+b的图象与反比例函数y2=(x<0)的图象相交于点A和点B.当y1>y2>0时,x的取值范围是_____.
13.同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是_____.
14.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A,B,C,则ac的值是________.
15.如图,直线 a∥b,直线 c 分别于 a,b 相交,∠1=50°,∠2=130°,则∠3 的度数为( )
A.50°B.80°C.100°D.130°
16.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是 .
17.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.
三、解答题(共7小题,满分69分)
18.(10分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
求证:△AEF≌△DEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD 的面积.
19.(5分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.求该反比例函数的解析式;若△ABC的面积为6,求直线AB的表达式.
20.(8分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:).
21.(10分)吴京同学根据学习函数的经验,对一个新函数y=的图象和性质进行了如下探究,请帮他把探究过程补充完整该函数的自变量x的取值范围是 .列表:
表中m= ,n= .描点、连线
在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:
观察所画出的函数图象,写出该函数的两条性质:
① ;
② .
22.(10分)计算:(﹣2)2+20180﹣
23.(12分)如图,已知△ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC.
24.(14分)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(取1.732)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
由折叠的性质可得CD=CF=,DE=EF,AC=,由三角形面积公式可求EF的长,即可求△ACE的面积.
【详解】
解:∵点F是AC的中点,
∴AF=CF=AC,
∵将△CDE沿CE折叠到△CFE,
∴CD=CF=,DE=EF,
∴AC=,
在Rt△ACD中,AD==1.
∵S△ADC=S△AEC+S△CDE,
∴×AD×CD=×AC×EF+×CD×DE
∴1×=EF+DE,
∴DE=EF=1,
∴S△AEC=××1=.
故选B.
【点睛】
本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键.
2、D
【解析】
先求出不等式的解集,再在数轴上表示出来即可.
【详解】
移项得,2x<1+1,
合并同类项得,2x<2,
x的系数化为1得,x<1.
在数轴上表示为:
.
故选D.
【点睛】
本题考查了解一元一次不等式,熟练掌握运算法则是解题的关键.
3、C
【解析】
过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.
【详解】
解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,
∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,
∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.
故选:C.
【点睛】
本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.
4、A
【解析】
试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,
∴这个斜坡的水平距离为:=10m,
∴这个斜坡的坡度为:50:10=5:1.
故选A.
点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.
5、C
【解析】
根据图象起始位置猜想点B或F为起点,则可以判断①正确,④错误.结合图象判断3≤t≤4图象的对称性可以判断②正确.结合图象易得③正确.
【详解】
解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1.故①正确;
观察图象t在3-4之间时,图象具有对称性则可知,机器人在OB或OF上,
则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故②正确;
所有点中,只有点D到A距离为2个单位,故③正确;
因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故④错误.
故选:C.
【点睛】
本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势.
6、B
【解析】
【分析】分别求出每一个不等式的解集,然后在数轴上表示出每个不等式的解集,对比即可得.
【详解】,
解不等式①得,x>-3,
解不等式②得,x≤2,
在数轴上表示①、②的解集如图所示,
故选B.
【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
7、B
【解析】
作出图形,结合图形进行分析可得.
【详解】
如图所示:
①以AC为对角线,可以画出▱AFCB,F(-3,1);
②以AB为对角线,可以画出▱ACBE,E(1,-1);
③以BC为对角线,可以画出▱ACDB,D(3,1),
故选B.
8、C
【解析】
根据直角三角形两锐角互余即可解决问题.
【详解】
解:∵直角三角形两锐角互余,
∴另一个锐角的度数=90°﹣45°=45°,
故选C.
【点睛】
本题考查直角三角形的性质,记住直角三角形两锐角互余是解题的关键.
9、B
【解析】
根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.
【详解】
如图:
BC=AB=AC=1,
∠BCB′=120°,
∴B点从开始至结束所走过的路径长度为2×弧BB′=2×.故选B.
10、D
【解析】
先根据AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把两式相加即可得出结论.
【详解】
解:∵AB∥CD,
∴∠BCD=∠1,
∵CD∥EF,
∴∠DCE=180°-∠2,
∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.
故选:D.
【点睛】
本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补.
二、填空题(共7小题,每小题3分,满分21分)
11、16000
【解析】
用毕业生总人数乘以“综合素质”等级为A的学生所占的比即可求得结果.
【详解】
∵A,B,C,D,E五个等级在统计图中的高之比为2:3:3:1:1,
∴该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为80000×=16000,
故答案为16000.
【点睛】
本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
12、-2
根据图象可直接得到y1>y2>0时x的取值范围.
【详解】
根据图象得:当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5,
故答案为﹣2<x<﹣0.5.
【点睛】
本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键.
13、50°
【解析】【分析】直接利用圆周角定理进行求解即可.
【详解】∵弧AB所对的圆心角是100°,
∴弧AB所对的圆周角为50°,
故答案为:50°.
【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
14、-1.
【解析】
设正方形的对角线OA长为1m,根据正方形的性质则可得出B、C坐标,代入二次函数y=ax1+c中,即可求出a和c,从而求积.
【详解】
设正方形的对角线OA长为1m,则B(﹣m,m),C(m,m),A(0,1m);
把A,C的坐标代入解析式可得:c=1m①,am1+c=m②,
①代入②得:am1+1m=m,
解得:a=-,
则ac=-1m=-1.
考点:二次函数综合题.
15、B
【解析】
根据平行线的性质即可解决问题
【详解】
∵a∥b,
∴∠1+∠3=∠2,
∵∠1=50°,∠2=130°,
∴∠3=80°, 故选B.
【点睛】
考查平行线的性质,解题的关键是熟练掌握平行线的性质,属于中考基础题.
16、(﹣b,a)
【解析】
解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),
设∠AOX=α,∠A1OD=β,A1坐标(x,y)则α+β="90°sinα=csβ" csα="sinβ" sinα==csβ=
同理cs α==sinβ=
所以x=﹣b,y=a,
故A1坐标为(﹣b,a).
【点评】重点理解三角函数的定义和求解方法,主要应用公式sinα=csβ,csα=sinβ.
17、7
【解析】
设树的高度为m,由相似可得,解得,所以树的高度为7m
三、解答题(共7小题,满分69分)
18、(1)证明详见解析;(2)证明详见解析;(3)1.
【解析】
(1)利用平行线的性质及中点的定义,可利用AAS证得结论;
(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.
【详解】
(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
∵AD为BC边上的中线
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,E是AD的中点,
∴AD=DC=BC,
∴四边形ADCF是菱形;
(3)连接DF,
∵AF∥BD,AF=BD,
∴四边形ABDF是平行四边形,
∴DF=AB=5,
∵四边形ADCF是菱形,
∴S菱形ADCF=AC▪DF=×4×5=1.
【点睛】
本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
19、(1)y;(2)yx+1.
【解析】
(1)把A的坐标代入反比例函数的解析式即可求得;
(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案.
【详解】
(1)由题意得:k=xy=2×3=6,
∴反比例函数的解析式为y;
(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),
∵反比例函数y的图象经过点B(a,b),
∴b,
∴AD=3,
∴S△ABCBC•ADa(3)=6,
解得a=6,
∴b1,
∴B(6,1),
设AB的解析式为y=kx+b,将A(2,3),B(6,1)代入函数解析式,得
,解得:,
所以直线AB的解析式为yx+1.
【点睛】
本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC,AD的长是解题的关键.
20、5.7米.
【解析】
试题分析:由题意,过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.
试题解析:解:如答图,过点A作AH⊥CD,垂足为H,
由题意可知四边形ABDH为矩形,∠CAH=30°,
∴AB=DH=1.5,BD=AH=6.
在Rt△ACH中,CH=AH•tan∠CAH=6tan30°=6×,
∵DH=1.5,∴CD=+1.5.
在Rt△CDE中,∵∠CED=60°,∴CE=(米).
答:拉线CE的长约为5.7米.
考点:1.解直角三角形的应用(仰角俯角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.矩形的判定和性质.
21、(1)一切实数(2)-,- (3)见解析(4)该函数有最小值没有最大值;该函数图象关于直线x=2对称
【解析】
(1)分式的分母不等于零;
(2)把自变量的值代入即可求解;
(3)根据题意描点、连线即可;
(4)观察图象即可得出该函数的其他性质.
【详解】
(1)由y=知,x2﹣4x+5≠0,所以变量x的取值范围是一切实数.
故答案为:一切实数;
(2)m=,n=,
故答案为:-,-;
(3)建立适当的直角坐标系,描点画出图形,如下图所示:
(4)观察所画出的函数图象,有如下性质:①该函数有最小值没有最大值;②该函数图象关于直线x=2对称.
故答案为:该函数有最小值没有最大值;该函数图象关于直线x=2对称
【点睛】
本题综合考查了二次函数的图象和性质,根据图表画出函数的图象是解题的关键.
22、﹣1
【解析】
分析:首先计算乘方、零次幂和开平方,然后再计算加减即可.
详解:原式=4+1-6=-1.
点睛:此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质.
23、详见解析
【解析】
由等边三角形的性质得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,证出∠ABE=∠CBD,证明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出结论.
【详解】
证明:∵△ABC,△DEB都是等边三角形,
∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,
∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,
即∠ABE=∠CBD,
在△ABE和△CBD中,
∵AB=CB,
∠ABE=∠CBD,
BE=BD,,
∴△ABE≌△CBD(SAS),
∴∠BAE=∠BCD=60°,
∴∠BAE=∠BAC,
∴AB平分∠EAC.
【点睛】
本题考查了全等三角形的判定与性质,等边三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.
24、不需要改道行驶
【解析】
解:过点A作AH⊥CF交CF于点H,由图可知,
∵∠ACH=75°-15°=60°,
∴.
∵AH>100米,
∴消防车不需要改道行驶.
过点A作AH⊥CF交CF于点H,应用三角函数求出AH的长,大于100米,不需要改道行驶,不大于100米,需要改道行驶.
x
…
﹣2
﹣1
0
1
2
3
4
5
6
…
y
…
m
﹣1
﹣5
n
﹣1
…
2024年四川省乐山市市中区海棠实验中学中考数学模拟试卷(含解析): 这是一份2024年四川省乐山市市中区海棠实验中学中考数学模拟试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年四川省乐山市市中区海棠实验中学中考数学适应性试卷(含解析): 这是一份2023年四川省乐山市市中区海棠实验中学中考数学适应性试卷(含解析),共29页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
四川省乐山市实验中学2021-2022学年中考数学仿真试卷含解析: 这是一份四川省乐山市实验中学2021-2022学年中考数学仿真试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。