搜索
    上传资料 赚现金
    英语朗读宝

    2022年四川省乐山市五中学中考五模数学试题含解析

    2022年四川省乐山市五中学中考五模数学试题含解析第1页
    2022年四川省乐山市五中学中考五模数学试题含解析第2页
    2022年四川省乐山市五中学中考五模数学试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年四川省乐山市五中学中考五模数学试题含解析

    展开

    这是一份2022年四川省乐山市五中学中考五模数学试题含解析,共21页。试卷主要包含了二次函数y=等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为(  )
    A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×108
    2.已知一次函数 y=kx+b 的大致图象如图所示,则关于 x 的一元二次方程 x2﹣2x+kb+1=0 的根的情况是( )

    A.有两个不相等的实数根 B.没有实数根
    C.有两个相等的实数根 D.有一个根是 0
    3.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为( )

    A.34° B.56° C.66° D.146°
    4.已知直线与直线的交点在第一象限,则的取值范围是( )
    A. B. C. D.
    5.已知二次函数的图象如图所示,则下列说法正确的是( )

    A.<0 B.<0 C.<0 D.<0
    6.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于( )

    A.1∶3 B.2∶3 C.∶2 D.∶3
    7.如图,在6×4的正方形网格中,△ABC的顶点均为格点,则sin∠ACB=(  )
    A. B.2 C. D.

    8.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )
    A. B. C. D.
    9.二次函数y=(2x-1)2+2的顶点的坐标是(  )
    A.(1,2) B.(1,-2) C.(,2)    D.(-,-2)
    10.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是(  )

    A.8 B.10 C.21 D.22
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将△AEF沿直线EF翻折,点A落在点P处,且点P在直线BC上.则线段CP长的取值范围是____.

    12.二次函数的图象如图,若一元二次方程有实数根,则 的最大值为___

    13.将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_____.
    14.若一个多边形每个内角为140°,则这个多边形的边数是________.
    15.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.

    (以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)
    请根据上图完成这个推论的证明过程.
    证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),
    S矩形EBMF=S△ABC-(______________+______________).
    易知,S△ADC=S△ABC,______________=______________,______________=______________.
    可得S矩形NFGD=S矩形EBMF.
    16.如图,在△ABC中,∠BAC=50°,AC=2,AB=3,将△ABC绕点A逆时针旋转50°,得到△AB1C1,则阴影部分的面积为_______.

    三、解答题(共8题,共72分)
    17.(8分)在中,,以为直径的圆交于,交于.过点的切线交的延长线于.求证:是的切线.

    18.(8分)某花卉基地种植了郁金香和玫瑰两种花卉共 30 亩,有关数据如表:

    成本
    (单位:万元/亩)
    销售额
    (单位:万元/亩)
    郁金香
    2.4
    3
    玫瑰
    2
    2.5
    (1)设种植郁金香 x 亩,两种花卉总收益为 y 万元,求 y 关于 x 的函数关系式.(收益=销售额﹣成本)
    (2) 若计划投入的成本的总额不超过 70 万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?
    19.(8分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D′处,直线l与CD边交于Q点.
    (1)在图(1)中利用无刻度的直尺和圆规作出直线l.(保留作图痕迹,不写作法和理由)
    (2)若PD′⊥PD,①求线段AP的长度;②求sin∠QD′D.

    20.(8分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.求出y与x的函数关系式;当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
    21.(8分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.求口袋中黄球的个数;甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
    22.(10分)如图,在平行四边形ABCD中,BD是对角线,∠ADB=90°,E、F分别为边AB、CD的中点.
    (1)求证:四边形DEBF是菱形;
    (2)若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,则PF+PM的最小值为   ,并在图上标出此时点P的位置.

    23.(12分)如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣x+b过点C.
    求m和b的值;直线y=﹣x+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x轴负方向运动.设点P的运动时间为t秒.
    ①若点P在线段DA上,且△ACP的面积为10,求t的值;
    ②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.
    24.某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:
    请将条形统计图补全;获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值0, b0,
    ∴方程x2﹣2x+kb+1=0有两个不等的实数根,故选A.
    【点睛】
    根的判别式
    3、B
    【解析】
    分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.
    详解:∵直线a∥b,∴∠2+∠BAD=180°.
    ∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.
    故选B.

    点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.
    4、C
    【解析】
    根据题意画出图形,利用数形结合,即可得出答案.
    【详解】
    根据题意,画出图形,如图:

    当时,两条直线无交点;
    当时,两条直线的交点在第一象限.
    故选:C.
    【点睛】
    本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.
    5、B
    【解析】
    根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2-4ac,根据x=1时,y>0,确定a+b+c的符号.
    【详解】
    解:∵抛物线开口向上,
    ∴a>0,
    ∵抛物线交于y轴的正半轴,
    ∴c>0,
    ∴ac>0,A错误;
    ∵->0,a>0,
    ∴b<0,∴B正确;
    ∵抛物线与x轴有两个交点,
    ∴b2-4ac>0,C错误;
    当x=1时,y>0,
    ∴a+b+c>0,D错误;
    故选B.
    【点睛】
    本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
    6、A
    【解析】
    ∵DE⊥AC,EF⊥AB,FD⊥BC,
    ∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,
    ∴∠C=∠FDE,
    同理可得:∠B=∠DFE,∠A=DEF,
    ∴△DEF∽△CAB,
    ∴△DEF与△ABC的面积之比= ,
    又∵△ABC为正三角形,
    ∴∠B=∠C=∠A=60°
    ∴△EFD是等边三角形,
    ∴EF=DE=DF,
    又∵DE⊥AC,EF⊥AB,FD⊥BC,
    ∴△AEF≌△CDE≌△BFD,
    ∴BF=AE=CD,AF=BD=EC,
    在Rt△DEC中,
    DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,
    又∵DC+BD=BC=AC=DC,
    ∴,
    ∴△DEF与△ABC的面积之比等于:
    故选A.
    点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比.
    7、C
    【解析】
    如图,由图可知BD=2、CD=1、BC=,根据sin∠BCA=可得答案.
    【详解】
    解:如图所示,

    ∵BD=2、CD=1,
    ∴BC===,
    则sin∠BCA===,
    故选C.
    【点睛】
    本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.
    8、C
    【解析】
    根据轴对称图形和中心对称图形的定义进行分析即可.
    【详解】
    A、不是轴对称图形,也不是中心对称图形.故此选项错误;
    B、不是轴对称图形,也不是中心对称图形.故此选项错误;
    C、是轴对称图形,也是中心对称图形.故此选项正确;
    D、是轴对称图形,但不是中心对称图形.故此选项错误.
    故选C.
    【点睛】
    考点:1、中心对称图形;2、轴对称图形
    9、C
    【解析】
    试题分析:二次函数y=(2x-1)+2即的顶点坐标为(,2)
    考点:二次函数
    点评:本题考查二次函数的顶点坐标,考生要掌握二次函数的顶点式与其顶点坐标的关系
    10、D
    【解析】
    分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解.
    详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.
    故选D.
    点睛:考查中位数的定义,看懂条形统计图是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    根据点E、F在边AB、AC上,可知当点E与点B重合时,CP有最小值,当点F与点C重合时CP有最大值,根据分析画出符合条件的图形即可得.
    【详解】
    如图,当点E与点B重合时,CP的值最小,

    此时BP=AB=3,所以PC=BC-BP=4-3=1,
    如图,当点F与点C重合时,CP的值最大,

    此时CP=AC,
    Rt△ABC中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP的最大值为5,
    所以线段CP长的取值范围是1≤CP≤5,
    故答案为1≤CP≤5.
    【点睛】
    本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.
    12、3
    【解析】
    试题解析::∵抛物线的开口向上,顶点纵坐标为-3,
    ∴a>1.
    -=-3,即b2=12a,
    ∵一元二次方程ax2+bx+m=1有实数根,
    ∴△=b2-4am≥1,即12a-4am≥1,即12-4m≥1,解得m≤3,
    ∴m的最大值为3,
    13、y=3x-1
    【解析】
    ∵y=3x+1的图象沿y轴向下平移2个单位长度,
    ∴平移后所得图象对应的函数关系式为:y=3x+1﹣2,即y=3x﹣1.
    故答案为y=3x﹣1.
    14、九
    【解析】
    根据多边形的内角和定理:180°•(n-2)进行求解即可.
    【详解】
    由题意可得:180°×(n−2)=140°×n,
    解得n=9,
    故多边形是九边形.
    故答案为9.
    【点睛】
    本题考查了多边形的内角和定理,解题的关键是熟练的掌握多边形的内角和定理.
    15、S△AEF S△FMC S△ANF S△AEF S△FGC S△FMC
    【解析】
    根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.
    【详解】
    S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-( S△ANF+S△FCM).
    易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,
    可得S矩形NFGD=S矩形EBMF.
    故答案分别为 S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.
    【点睛】
    本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.
    16、π
    【解析】
    试题分析:∵,∴S阴影===.故答案为.
    考点:旋转的性质;扇形面积的计算.

    三、解答题(共8题,共72分)
    17、证明见解析.
    【解析】
    连接OE,由OB=OD和AB=AC可得,则OF∥AC,可得,由圆周角定理和等量代换可得,由SAS证得,从而得到,即可证得结论.
    【详解】
    证明:如图,连接,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,


    ∴,则,
    ∴,
    ∴,即,
    在和中,
    ∵,
    ∴,

    ∵是的切线,则,
    ∴,
    ∴,则,
    ∴是的切线.

    【点睛】
    本题主要考查了等腰三角形的性质、切线的性质和判定、圆周角定理和全等三角形的判定与性质,熟练掌握圆周角定理和全等三角形的判定与性质是解题的关键.
    18、(1)y = 0.1x + 15,(2)郁金香 25 亩,玫瑰 5 亩
    【解析】
    (1)根据题意和表格中的数据可得到y关于x的函数;
    (2)根据题意可列出相应的不等式,再根据(1)中的函数关系式即可求解.
    【详解】
    (1)由题意得y=(3-2.4)x-(2.5-2)(30-x)=0.1x+15
    即y关于x的函数关系式为y=0.1x+15
    (2)由题意得2.4x+2(30-x)≤70
    解得x≤25,
    ∵y=0.1x+15
    ∴当x=25时,y最大=17.5
    30-x=5,
    ∴要使获得的收益最大,基地应种植郁金香25亩和玫瑰5亩.
    【点睛】
    此题主要考查一次函数的应用,解题的关键是根据题意进行列出关系式与不等式进行求解.
    19、(1)见解析;(2)
    【解析】
    (1)根据题意作出图形即可;
    (2)由(1)知,PD=PD′,根据余角的性质得到∠ADP=∠BPD′,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD==2,根据三角函数的定义即可得到结论.
    【详解】
    (1)连接PD,以P为圆心,PD为半径画弧交BC于D′,过P作DD′的垂线交CD于Q,
    则直线PQ即为所求;

    (2)由(1)知,PD=PD′,
    ∵PD′⊥PD,
    ∴∠DPD′=90°,
    ∵∠A=90°,
    ∴∠ADP+∠APD=∠APD+∠BPD′=90°,
    ∴∠ADP=∠BPD′,
    在△ADP与△BPD′中,,
    ∴△ADP≌△BPD′,
    ∴AD=PB=4,AP= BD′
    ∵PB=AB﹣AP=6﹣AP=4,
    ∴AP=2;
    ∴PD==2,BD′=2
    ∴CD′=BC- BD′=4-2=2
    ∵PD=PD′,PD⊥PD′,
    ∵DD′=PD=2,
    ∵PQ垂直平分DD′,连接Q D′
    则DQ= D′Q
    ∴∠QD′D=∠QDD′
    ∴sin∠QD′D=sin∠QDD′=.

    【点睛】
    本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.
    20、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.
    【解析】
    (1)待定系数法列方程组求一次函数解析式.
    (2)列一元二次方程求解.
    (3)总利润=单件利润销售量:w=(x-20)(-2x+80),得到二次函数,先配方,在定义域上求最值.
    【详解】
    (1)设y与x的函数关系式为y=kx+b.
    把(22,36)与(24,32)代入,得
    解得
    ∴y=-2x+80(20≤x≤28).
    (2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意,得
    (x-20)y=150,即(x-20)(-2x+80)=150.
    解得x1=25,x2=35(舍去).
    答:每本纪念册的销售单价是25元.
    (3)由题意,可得w=(x-20)(-2x+80)=-2(x-30)2+200.
    ∵售价不低于20元且不高于28元,
    当x<30时,y随x的增大而增大,
    ∴当x=28时,w最大=-2×(28-30)2+200=192(元).
    答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.
    21、 (1)1;(2)
    【解析】
    (1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;
    【详解】
    解:(1)设口袋中黄球的个数为个,
    根据题意得:
    解得:=1
    经检验:=1是原分式方程的解
    ∴口袋中黄球的个数为1个
    (2)画树状图得:

    ∵共有12种等可能的结果,两次摸出都是红球的有2种情况
    ∴两次摸出都是红球的概率为: .
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.
    22、(1)详见解析;(2).
    【解析】
    (1)根据直角三角形斜边上的中线等于斜边的一半,以及平行四边形的对边相等证明四边形DEBF的四边相等即可证得;
    (2)连接EM,EM与BD的交点就是P,FF+PM的最小值就是EM的长,证明△BEF是等边三角形,利用三角函数求解.
    【详解】
    (1)∵平行四边形ABCD中,AD∥BC,∴∠DBC=∠ADB=90°.
    ∵△ABD中,∠ADB=90°,E时AB的中点,∴DE=AB=AE=BE.
    同理,BF=DF.
    ∵平行四边形ABCD中,AB=CD,∴DE=BE=BF=DF,∴四边形DEBF是菱形;
    (2)连接BF.
    ∵菱形DEBF中,∠DEB=120°,∴∠EFB=60°,∴△BEF是等边三角形.
    ∵M是BF的中点,∴EM⊥BF.
    则EM=BE•sin60°=4×=2.
    即PF+PM的最小值是2.
    故答案为:2.

    【点睛】
    本题考查了菱形的判定与性质以及图形的对称,根据菱形的对称性,理解PF+PM的最小值就是EM的长是关键.
    23、(1)4,5;(2)①7;②4或 或或8.
    【解析】
    分别令可得b和m的值;
    根据的面积公式列等式可得t的值;
    存在,分三种情况:
    当时,如图1,当时,如图2,当时,如图3,分别求t的值即可.
    【详解】
    把点代入直线中得:,
    点,
    直线过点C,
    ,;
    由题意得:,
    中,当时,,


    中,当时,,



    的面积为10,


    则t的值7秒;
    存在,分三种情况:
    当时,如图1,过C作于E,



    即;
    当时,如图2,




    当时,如图3,






    ,即;
    综上,当秒或秒或秒或8秒时,为等腰三角形.
    【点睛】
    本题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,等腰三角形的判定,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键,并注意运用分类讨论的思想解决问题.
    24、(1)答案见解析;(2).
    【解析】
    【分析】(1)根据参与奖有10人,占比25%可求得获奖的总人数,用总人数减去二等奖、三等奖、鼓励奖、参与奖的人数可求得一等奖的人数,据此补全条形图即可;
    (2)根据题意分别求出七年级、八年级、九年级获得一等奖的人数,然后通过列表或画树状图法进行求解即可得.
    【详解】(1)10÷25%=40(人),
    获一等奖人数:40-8-6-12-10=4(人),
    补全条形图如图所示:

    (2)七年级获一等奖人数:4×=1(人),
    八年级获一等奖人数:4×=1(人),
    ∴ 九年级获一等奖人数:4-1-1=2(人),
    七年级获一等奖的同学用M表示,八年级获一等奖的同学用N表示,
    九年级获一等奖的同学用P1 、P2表示,树状图如下:

    共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,
    则所选出的两人中既有七年级又有九年级同学的概率P=.
    【点评】此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键.

    相关试卷

    四川省乐山市实验中学2022年中考五模数学试题含解析:

    这是一份四川省乐山市实验中学2022年中考五模数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,如图,在平面直角坐标系中,以A等内容,欢迎下载使用。

    四川省乐山市第五中学2022年中考考前最后一卷数学试卷含解析:

    这是一份四川省乐山市第五中学2022年中考考前最后一卷数学试卷含解析,共25页。试卷主要包含了答题时请按要求用笔,若点P,已知等内容,欢迎下载使用。

    2022年四川省乐山市五通桥区重点中学中考数学对点突破模拟试卷含解析:

    这是一份2022年四川省乐山市五通桥区重点中学中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了下列实数中是无理数的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map