|试卷下载
终身会员
搜索
    上传资料 赚现金
    上海市浦东新区2022年中考数学模拟试题含解析
    立即下载
    加入资料篮
    上海市浦东新区2022年中考数学模拟试题含解析01
    上海市浦东新区2022年中考数学模拟试题含解析02
    上海市浦东新区2022年中考数学模拟试题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    上海市浦东新区2022年中考数学模拟试题含解析

    展开
    这是一份上海市浦东新区2022年中考数学模拟试题含解析,共24页。试卷主要包含了估计的值在,的相反数是,下列四个命题,正确的有个,如图1是一座立交桥的示意图等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是(  )

    A.56 B.58 C.63 D.72
    2.要使式子有意义,的取值范围是( )
    A. B.且 C.. 或 D. 且
    3.如图是用八块相同的小正方体搭建的几何体,它的左视图是( )

    A. B.
    C. D.
    4.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:
    选手
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    时间(min)
    129
    136
    140
    145
    146
    148
    154
    158
    165
    175
    由此所得的以下推断不正确的是( )
    A.这组样本数据的平均数超过130
    B.这组样本数据的中位数是147
    C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差
    D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好
    5.直线y=x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为( )

    A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)
    6.估计的值在( )
    A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
    7.的相反数是 ( )
    A. B. C.3 D.-3
    8.下列四个命题,正确的有(  )个.
    ①有理数与无理数之和是有理数
    ②有理数与无理数之和是无理数
    ③无理数与无理数之和是无理数
    ④无理数与无理数之积是无理数.
    A.1 B.2 C.3 D.4
    9.如图所示,在平面直角坐标系中,抛物线y=-x2+2x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+AP的最小值为( ).

    A.3 B. C. D.
    10.如图1是一座立交桥的示意图(道路宽度忽略不计),A为人口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且,,所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以10m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示.结合题目信息,下列说法错误的是(  )

    A.甲车在立交桥上共行驶8s B.从F口出比从G口出多行驶40m C.甲车从F口出,乙车从G口出 D.立交桥总长为150m
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为_____.

    12.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2, AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.

    13.如图,已知CD是Rt△ABC的斜边上的高,其中AD=9cm,BD=4cm,那么CD等于_______cm.

    14.分解因式:2x2-8x+8=__________.
    15.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为______.
    16.化简:= .
    17.方程的解是__________.
    三、解答题(共7小题,满分69分)
    18.(10分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.求购买A型和B型公交车每辆各需多少万元?预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
    19.(5分)在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH⊥轴,垂足为点H,OH=3,tan∠AOH=,点B的坐标为(,-2).求该反比例函数和一次函数的解析式;求△AHO的周长.

    20.(8分) [阅读]我们定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“中边三角形”,把这条边和其边上的中线称为“对应边”.

    [理解]如图1,Rt△ABC是“中边三角形”,∠C=90°,AC和BD是“对应边”,求tanA的值;
    [探究]如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.当β=45°时,若△APQ是“中边三角形”,试求的值.
    21.(10分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.求k和n的值;若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.

    22.(10分)(1)问题发现
    如图1,在Rt△ABC中,∠A=90°,=1,点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接 CD.
    (1)①求的值;②求∠ACD的度数.
    (2)拓展探究
    如图 2,在Rt△ABC中,∠A=90°,=k.点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD,请判断∠ACD与∠B 的数量关系以及PB与CD之间的数量关系,并说明理由.
    (3)解决问题
    如图 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是边BC上一动点(不与点B重合),∠PAD=∠BAC,∠APD=∠B,连接CD.若 PA=5,请直接写出CD的长.

    23.(12分)某班为确定参加学校投篮比赛的任选,在A、B两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们每次投中的个数绘制成如图所示的折线统计图.
    (1)根据图中所给信息填写下表:
    投中个数统计
    平均数
    中位数
    众数
    A
       
    8
       
    B
    7
       
    7
    (2)如果这个班只能在A、B之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明.

    24.(14分)如图,已知二次函数的图象与轴交于,两点在左侧),与轴交于点,顶点为.

    (1)当时,求四边形的面积;
    (2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点,使,求点的坐标;
    (3)如图2,将(1)中抛物线沿直线向斜上方向平移个单位时,点为线段上一动点,轴交新抛物线于点,延长至,且,若的外角平分线交点在新抛物线上,求点坐标.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    试题分析:第一个图形的小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个.
    考点:规律题
    2、D
    【解析】
    根据二次根式和分式有意义的条件计算即可.
    【详解】
    解:∵ 有意义,
    ∴a+2≥0且a≠0,
    解得a≥-2且a≠0.
    故本题答案为:D.
    【点睛】
    二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0.
    3、B
    【解析】
    根据几何体的左视图是从物体的左面看得到的视图,对各个选项中的图形进行分析,即可得出答案.
    【详解】
    左视图是从左往右看,左侧一列有2层,右侧一列有1层1,选项B中的图形符合题意,
    故选B.
    【点睛】
    本题考查了简单组合体的三视图,理解掌握三视图的概念是解答本题的关键.主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.
    4、C
    【解析】
    分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.
    详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.
    点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位.
    5、C
    【解析】
    作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.

    直线y=x+4与x轴、y轴的交点坐标为A(﹣6,0)和点B(0,4),
    因点C、D分别为线段AB、OB的中点,可得点C(﹣3,1),点D(0,1).
    再由点D′和点D关于x轴对称,可知点D′的坐标为(0,﹣1).
    设直线CD′的解析式为y=kx+b,直线CD′过点C(﹣3,1),D′(0,﹣1),
    所以,解得:,
    即可得直线CD′的解析式为y=﹣x﹣1.
    令y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣,
    所以点P的坐标为(﹣,0).故答案选C.
    考点:一次函数图象上点的坐标特征;轴对称-最短路线问题.
    6、D
    【解析】
    寻找小于26的最大平方数和大于26的最小平方数即可.
    【详解】
    解:小于26的最大平方数为25,大于26的最小平方数为36,故,即:
    ,故选择D.
    【点睛】
    本题考查了二次根式的相关定义.
    7、B
    【解析】
    先求的绝对值,再求其相反数:
    根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是;
    相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.因此的相反数是.故选B.
    8、A
    【解析】
    解:①有理数与无理数的和一定是有理数,故本小题错误;
    ②有理数与无理数的和一定是无理数,故本小题正确;
    ③例如=0,0是有理数,故本小题错误;
    ④例如(﹣)×=﹣2,﹣2是有理数,故本小题错误.
    故选A.
    点睛:本题考查的是实数的运算及无理数、有理数的定义,熟知以上知识是解答此题的关键.
    9、A
    【解析】
    连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到点B,再利用配方法得到点A,得到OA的长度,判断△AOB为等边三角形,然后利用∠OAP=30°得到PH= AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.

    【详解】
    连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如图当y=0时-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB为等边三角形,∠OAP=30°得到PH= AP,因为AP垂直平分OB,所以PO=PB,所以OP+AP=PB+PH,所以当H,P,B共线时,PB+PH最短,而BC=AB=3,所以最小值为3.
    故选A.
    【点睛】
    本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键.
    10、C
    【解析】
    分析:结合2个图象分析即可.
    详解:A.根据图2甲的图象可知甲车在立交桥上共行驶时间为:,故正确.
    B.3段弧的长度都是:从F口出比从G口出多行驶40m,正确.
    C.分析图2可知甲车从G口出,乙车从F口出,故错误.
    D.立交桥总长为:故正确.
    故选C.
    点睛:考查图象问题,观察图象,读懂图象是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、(,1)或(﹣,1)
    【解析】
    根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.将P的纵坐标代入函数解析式,求P点坐标即可
    【详解】
    根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.
    当y=1时, x1-1=1,解得x=±
    当y=-1时, x1-1=-1,方程无解
    故P点的坐标为()或(-)
    【点睛】
    此题注意应考虑两种情况.熟悉直线和圆的位置关系应满足的数量关系是解题的关键.
    12、或﹣.
    【解析】
    试题分析:当点F在OB上时,设EF交CD于点P,
    可求点P的坐标为(,1).
    则AF+AD+DP=3+x, CP+BC+BF=3﹣x,
    由题意可得:3+x=2(3﹣x),
    解得:x=.
    由对称性可求当点F在OA上时,x=﹣,
    故满足题意的x的值为或﹣.
    故答案是或﹣.
    【点睛】
    考点:动点问题.
    13、1
    【解析】
    利用△ACD∽△CBD,对应线段成比例就可以求出.
    【详解】
    ∵CD⊥AB,∠ACB=90°,
    ∴△ACD∽△CBD,
    ∴,
    ∴,
    ∴CD=1.
    【点睛】
    本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.
    14、2(x-2)2
    【解析】
    先运用提公因式法,再运用完全平方公式.
    【详解】
    :2x2-8x+8=.
    故答案为2(x-2)2.
    【点睛】
    本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.
    15、
    【解析】
    利用勾股定理求出斜边长,再利用面积法求出斜边上的高即可.
    【详解】
    解:∵直角三角形的两条直角边的长分别为5,12,
    ∴斜边为=13,
    ∵三角形的面积=×5×12=×13h(h为斜边上的高),
    ∴h=.
    故答案为:.
    【点睛】
    考查了勾股定理,以及三角形面积公式,熟练掌握勾股定理是解本题的关键.
    16、2
    【解析】
    根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根, 特别地,规定0的算术平方根是0.
    【详解】
    ∵22=4,∴=2.
    【点睛】
    本题考查求算术平方根,熟记定义是关键.
    17、x=1
    【解析】
    将方程两边平方后求解,注意检验.
    【详解】
    将方程两边平方得x-3=4,
    移项得:x=1,
    代入原方程得=2,原方程成立,
    故方程=2的解是x=1.
    故本题答案为:x=1.
    【点睛】
    在解无理方程是最常用的方法是两边平方法及换元法,解得答案时一定要注意代入原方程检验.

    三、解答题(共7小题,满分69分)
    18、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
    (2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;
    (3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.
    【解析】
    详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,
    解得,
    答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
    (2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得

    解得:6≤a≤8,
    因为a是整数,
    所以a=6,7,8;
    则(10-a)=4,3,2;
    三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.
    (3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;
    ②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;
    ③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
    故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
    【点睛】
    此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.
    19、(1)一次函数为,反比例函数为;(2)△AHO的周长为12
    【解析】
    分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.
    (2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.
    详解:(1)∵tan∠AOH==
    ∴AH=OH=4
    ∴A(-4,3),代入,得
    k=-4×3=-12
    ∴反比例函数为

    ∴m=6
    ∴B(6,-2)

    ∴=,b=1
    ∴一次函数为
    (2)
    △AHO的周长为:3+4+5=12
    点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.
    20、tanA=;综上所述,当β=45°时,若△APQ是“中边三角形”,的值为或.
    【解析】
    (1)由AC和BD是“对应边”,可得AC=BD,设AC=2x,则CD=x,BD=2x,可得∴BC=x,可得tanA===
    (2) 当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,可得AC是QP的垂直平分线.可求得△AEF∽△CEP,=,分两种情况:
    当底边PQ与它的中线AE相等,即AE=PQ时,
    ==,
    ∴=;
    当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,
    (3)作QN⊥AP于N,可得tan∠APQ===,
    tan∠APE===,
    ∴=,
    【详解】
    解:[理解]∵AC和BD是“对应边”,
    ∴AC=BD,
    设AC=2x,则CD=x,BD=2x,
    ∵∠C=90°,
    ∴BC===x,
    ∴tanA===;
    [探究]若β=45°,当点P在AB上时,△APQ是等腰直角三角形,不可能是“中边三角形”,
    如图2,当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,
    ∵PC=QC,∠ACB=∠ACD,
    ∴AC是QP的垂直平分线,
    ∴AP=AQ,
    ∵∠CAB=∠ACP,∠AEF=∠CEP,
    ∴△AEF∽△CEP,
    ∴===,
    ∵PE=CE,
    ∴=,
    分两种情况:
    当底边PQ与它的中线AE相等,即AE=PQ时,
    ==,
    ∴=;
    当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,
    如图3,作QN⊥AP于N,
    ∴MN=AN=PM=QM,
    ∴QN=MN,
    ∴ntan∠APQ===,
    ∴ta∠APE===,
    ∴=,
    综上所述,当β=45°时,若△APQ是“中边三角形”,的值为或.

    【点睛】本题是一道相 似形综合运用的试题, 考查了相 似三角形的判定及性质的运用, 勾股定理的运用, 等腰直角三角形的性质的运用, 等腰三角形的性质的运用, 锐角三角形函数值的运用, 解答时灵活运用三角函数值建立方程求解是解答的关键.
    21、(1)n=1,k=1.(2)当2≤x≤1时,1≤y≤2.
    【解析】
    【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;
    (2)由k=1>0结合反比例函数的性质,即可求出:当2≤x≤1时,1≤y≤2.
    【详解】(1)当x=1时,n=﹣×1+4=1,
    ∴点B的坐标为(1,1).
    ∵反比例函数y=过点B(1,1),
    ∴k=1×1=1;
    (2)∵k=1>0,
    ∴当x>0时,y随x值增大而减小,
    ∴当2≤x≤1时,1≤y≤2.
    【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,用到了点在函数图象上,则点的坐标就适合所在函数图象的函数解析式,待定系数法等知识,熟练掌握相关知识是解题的关键.
    22、(1)1,45°;(2)∠ACD=∠B, =k;(3).
    【解析】
    (1)根据已知条件推出△ABP≌△ACD,根据全等三角形的性质得到PB=CD,∠ACD=∠B=45°,于是得到
    根据已知条件得到△ABC∽△APD,由相似三角形的性质得到,得到 ABP∽△CAD,根据相似三角形的性质得到结论;
    过A作AH⊥BC 于 H,得到△ABH 是等腰直角三角形,求得 AH=BH=4, 根据勾股定理得到根据相似三角形的性质得到 ,推出△ABP∽△CAD,根据相似三角形的性质即可得到结论.
    【详解】
    (1)∵∠A=90°,

    ∴AB=AC,
    ∴∠B=45°,
    ∵∠PAD=90°,∠APD=∠B=45°,
    ∴AP=AD,
    ∴∠BAP=∠CAD,
    在△ABP 与△ACD 中,
    AB=AC, ∠BAP=∠CAD,AP=AD,
    ∴△ABP≌△ACD,
    ∴PB=CD,∠ACD=∠B=45°,
    ∴=1,
    (2)
    ∵∠BAC=∠PAD=90°,∠B=∠APD,
    ∴△ABC∽△APD,

    ∵∠BAP+∠PAC=∠PAC+∠CAD=90°,
    ∴∠BAP=∠CAD,
    ∴△ABP∽△CAD,
    ∴∠ACD=∠B,

    (3)过 A 作 AH⊥BC 于 H,

    ∵∠B=45°,
    ∴△ABH 是等腰直角三角形,

    ∴AH=BH=4,
    ∵BC=12,
    ∴CH=8,

    ∴PH==3,
    ∴PB=1,
    ∵∠BAC=∠PAD=,∠B=∠APD,
    ∴△ABC∽△APD,
    ∴,
    ∵∠BAP+∠PAC=∠PAC+∠CAD,
    ∴∠BAP=∠CAD,
    ∴△ABP∽△CAD,
    ∴即

    过 A 作 AH⊥BC 于 H,

    ∵∠B=45°,
    ∴△ABH 是等腰直角三角形,

    ∴AH=BH=4,
    ∵BC=12,
    ∴CH=8,

    ∴PH==3,
    ∴PB=7,
    ∵∠BAC=∠PAD=,∠B=∠APD,
    ∴△ABC∽△APD,
    ∴,
    ∵∠BAP+∠PAC=∠PAC+∠CAD,
    ∴∠BAP=∠CAD,
    ∴△ABP∽△CAD,
    ∴即

    【点睛】
    本题考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定
    和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.
    23、(1)7,9,7;(2)应该选派B;
    【解析】
    (1)分别利用平均数、中位数、众数分析得出答案;
    (2)利用方差的意义分析得出答案.
    【详解】
    (1)A成绩的平均数为(9+10+4+3+9+7)=7;众数为9;
    B成绩排序后为6,7,7,7,7,8,故中位数为7;
    故答案为:7,9,7;
    (2)= [(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;
    = [(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]= ;
    从方差看,B的方差小,所以B的成绩更稳定,从投篮稳定性考虑应该选派B.
    【点睛】
    此题主要考查了中位数、众数、方差的定义,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    24、(1)4;(2),;(3).
    【解析】
    (1)过点D作DE⊥x轴于点E,求出二次函数的顶点D的坐标,然后求出A、B、C的坐标,然后根据即可得出结论;
    (2)设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,证出,列表比例式,并找出关于t的方程即可得出结论;
    (3)判断点D在直线上,根据勾股定理求出DH,即可求出平移后的二次函数解析式,设点,,过点作于,于,轴于,根据勾股定理求出AG,联立方程即可求出m、n,从而求出结论.
    【详解】
    解:(1)过点D作DE⊥x轴于点E

    当时,得到,
    顶点,
    ∴DE=1
    由,得,;
    令,得;
    ,,,
    ,OC=3

    (2)如图1,设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,

    由翻折得:,



    轴,,



    由勾股定理得:,





    ,,

    解得:(不符合题意,舍去),;
    ,.
    (3)原抛物线的顶点在直线上,
    直线交轴于点,
    如图2,过点作轴于,

    由题意,平移后的新抛物线顶点为,解析式为,
    设点,,则,,,
    过点作于,于,轴于,




    、分别平分,,

    点在抛物线上,

    根据题意得:
    解得:

    【点睛】
    此题考查的是二次函数的综合大题,难度较大,掌握二次函数平移规律、二次函数的图象及性质、相似三角形的判定及性质和勾股定理是解决此题的关键.

    相关试卷

    2023年上海市浦东新区中考数学模拟试卷(5月份)(含解析): 这是一份2023年上海市浦东新区中考数学模拟试卷(5月份)(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年上海市浦东新区中考数学模拟试卷(含答案): 这是一份2023年上海市浦东新区中考数学模拟试卷(含答案),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年上海市浦东新区中考数学模拟试卷(5月份)(含解析): 这是一份2023年上海市浦东新区中考数学模拟试卷(5月份)(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map